Library globals

Source emexec.nas

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
 #---------------------------------------------------------------------------
 #
 #	Title                : Emesary based 'real time' module executive
 #
 #	File Type            : Implementation File
 #
 #	Description          : Uses Emesary notifications to permit Nasal subsystems to be invoked in
 #                       : a controlled manner.
 #                       : 
 #                       : Sends out a FrameNotification for each frame recipient can implement
 #                       : workload reduction as appropriate based on skipping frames (2=half,
 #                       : 4=quarter etc.) because some code can safely be run at quarter rate
 #                       : (e.g. ~10hz).
 #                       : 
 #                       : The developer should interleave slower rate modules to spread out
 #                       : workload A frame is defined by the timer rate; which is usually the
 #                       : maximum rate as determined by the FPS.
 #                       : 
 #                       : This is an alternative to the timer based or explicit function calling
 #                       : way of invoking aircraft systems.  It has the advantage of using less
 #                       : timers and remaining modular, as each aircraft subsytem can simply
 #                       : register itself with the global transmitter to receive the frame
 #                       : notification.
 #
 #	See Also             : https://wiki.flightgear.org/Nasal_Optimisation#Emesary_real_time_executive
 #                       : F-15 and F-14 for examples of how to use this.
 #
 #	Author               : Richard Harrison (richard@zaretto.com)
 #
 #	Creation Date        : 4 June 2018
 #
 #  Copyright (C) 2018 Richard Harrison           Released under GPL V2
 #
 #---------------------------------------------------------------------------*/

#
#
# This is the notification that is sent out to all recipients each frame.
# The notification contains a hash of property values.
# Frame modules can request that the hash includes key/property pairs 
# by using the FrameNotificationAddProperty
#
# An instance of this class is be contained within the  EmesaryExecutive.
var FrameNotification = 
{
    debug: 0,
    # The rate and the transmitter to use
    new: func(_rate, transmitter=nil)
    {
        if (transmitter == nil)
            transmitter = emesary.GlobalTransmitter;

        var new_class = emesary.Notification.new("FrameNotification", _rate, 0);
        append(new_class.parents, FrameNotification);
        new_class.Rate = _rate;
        new_class.FrameCount = 0;
        new_class.ElapsedSeconds = 0;
        new_class.monitored = {};
        new_class.properties = {};
        new_class.transmitter = transmitter;

        #
        # embed a recipient within this notification to allow the monitored property
        # mapping list to be modified.
        new_class.Recipient = emesary.Recipient.new("FrameNotification");
        new_class.Recipient.Receive = func(notification)
        {
            if (notification.NotificationType == "FrameNotificationAddProperty")
            {
                var root_node = props.globals;
                if (notification.root_node != nil) {
                    root_node = notification.root_node;
                }
                if (new_class.properties[notification.property] != nil 
                    and new_class.properties[notification.property] != notification.variable)
                  logprint(1,"FrameNotification: (",notification.module,") FrameNotification: already have variable ",new_class.properties[notification.property]," for ",notification.variable, " referencing property ",notification.property);

                if (new_class.monitored[notification.variable] != nil 
                    and new_class.monitored[notification.variable].getPath() != notification.property
                    and new_class.monitored[notification.variable].getPath() != "/"~notification.property)
                  logprint(1,"FrameNotification: (",notification.module,") FrameNotification: already have variable ",notification.variable,"=",new_class.monitored[notification.variable].getPath(), " using different property ",notification.property);
                #                else if (new_class.monitored[notification.variable] == nil)
                #                  print("[INFO]: (",notification.module,") FrameNotification.",notification.variable, " = ",notification.property);

                new_class.monitored[notification.variable] = root_node.getNode(notification.property,1);
                new_class.properties[notification.property] = notification.variable;

                logprint(3,"(",notification.module,") FrameNotification.",notification.variable, " = ",notification.property, " -> ", new_class.monitored[notification.variable].getPath() );
                return emesary.Transmitter.ReceiptStatus_OK;
            }
            return emesary.Transmitter.ReceiptStatus_NotProcessed;
        };
        new_class.transmitter.Register(new_class.Recipient);
        return new_class;
    },
    fetchvars : func() {
        foreach (var mp; keys(me.monitored)){
            if(me.monitored[mp] != nil){
                if (FrameNotification.debug > 1)
                    logprint(4," ",mp, " = ",me.monitored[mp].getValue());
                me[mp] = me.monitored[mp].getValue();
            }
        }
    },
};

#
# request to add a property to the frame notification
var FrameNotificationAddProperty = 
{
    new: func(module, variable, property, root_node=nil)
    {
        var new_class = emesary.Notification.new("FrameNotificationAddProperty", variable, 0);
        if (root_node == nil)
          root_node = props.globals;
        new_class.module = module ;
        new_class.variable = variable;
        new_class.property = property;
        new_class.root_node = root_node;
        return new_class;
    },
};

#
# the main exeuctive class.
# There will be one of these as emexec.ExceModule however multiple instances could be 
# created - but only by those who understand scheduling - because it is not necessary
# to have more than one - unless we mange to enable some sort of per core threading.
var EmesaryExecutive =  {
    new : func(_ident="EMEXEC", transmitter=nil) {

        # by default use global transmitter
        if (transmitter == nil)
            transmitter = emesary.GlobalTransmitter;

        var new_class = {
            parents: [EmesaryExecutive],
            Ident: _ident,
            lp : aircraft.lowpass.new(3),
            frameNotification : FrameNotification.new(1, transmitter),
            frame_inc : 0,
            cur_frame_inc : 0.033, # start off at 33hz
        };
        new_class.transmitter = transmitter;
        
        # setup the properties to monitor for this system
        var exec_prop_list = {
                frame_rate                : "/sim/frame-rate",
                frame_rate_worst          : "/sim/frame-rate-worst",
                elapsed_seconds           : "/sim/time/elapsed-sec",
                };
        new_class.monitor_properties(exec_prop_list);

        # now setup the timer.
        # - initially use update rate of 30hz.
        # - use simulated time as otherwise will continue to be called when paused
        # - start timer now, as the listener will effectively block module calls until sim init
        new_class.frameNotification.running = 0;
        setlistener("sim/signals/fdm-initialized", func(v) {
            logprint(1,"started ",new_class.Ident);
            new_class.frameNotification.dT = 0; # seconds
            new_class.frameNotification.curT = 0;
            new_class.frameNotification.running = 1;
        });
        new_class.execTimer = maketimer(new_class.cur_frame_inc, new_class, new_class.timerCallback);
        new_class.execTimer.simulatedTime = 1;

        return new_class;
     },
     start : func {
        me.execTimer.start();
     },
     stop : func {
        me.execTimer.stop();
     },
     # request monitoring of a list of hash value pairs.
     monitor_properties : func(input){
        # this uses a notification to isolate the implementation which is also in this module; so it could
        # call directly; however the design is that a FrameNotification add property could also trigger other
        # logic that we do not know about.
        foreach (var name; keys(input)) {
            me.transmitter.NotifyAll(FrameNotificationAddProperty.new(me.Ident, name, input[name]));
        }
     },

     # ident: String (e.g F-15 HUD)
     # inputs: hash of properties to monitor
     #         : e.g 
     #           {
     #               AirspeedIndicatorIndicatedMach          : "instrumentation/airspeed-indicator/indicated-mach",
     #               Alpha                                   : "orientation/alpha-indicated-deg",
     #           }
     #          : object - must have an update(notification) method that will receive a  frame notification
     #          : rate is the frame skip update rate (1/update rate). 0 or 1 means full rate
     #          : offset is the offset to permit interleave
     #             - e.g for two objects to interleave we could have a rate of two and an offset of 0 and 1 which
     #                    would result in one object being processed per frame
     register: func(ident, properties_to_monitor, object, rate=1, frame_offset=0) {
		var new_class = emesary.Recipient.new(ident);

        me.monitor_properties(properties_to_monitor);
        new_class.object = object;
        new_class.Receive = func(notification)
        {
            if (notification.NotificationType == "FrameNotification"){
                if (rate <= 1 or 0 == math.mod(notification.FrameCount + frame_offset,rate)){
                    new_class.object.update(notification);
                }
                return emesary.Transmitter.ReceiptStatus_OK;
            }
            return emesary.Transmitter.ReceiptStatus_NotProcessed;
        };
        me.transmitter.Register(new_class);
        return new_class;
  },
  timerCallback : func {

         if (!me.frameNotification.running){
            logprint(3, me.Ident~": Waiting for start");
            return;
        }
        me.frameNotification.fetchvars();
        me.frameNotification.dT = me.frameNotification.elapsed_seconds - me.frameNotification.curT;

        if (me.frameNotification.dT > 1.0) 
        me.frameNotification.curT = me.frameNotification.elapsed_seconds;

        me.transmitter.NotifyAll(me.frameNotification);

        me.frameNotification.FrameCount = me.frameNotification.FrameCount + 1;
        me.frameNotification.filtered_frame_rate_worst = (int)(me.lp.filter(me.frameNotification.frame_rate_worst));
    
        # this permits us to go up to 1/32 rate (which could be less than 1hz)
        if (me.frameNotification.FrameCount > 32) {
            me.frameNotification.FrameCount = 0;
        # adjust exec rate based on frame rate.
            if (me.frameNotification.filtered_frame_rate_worst < 5) {
                me.frame_inc = 0.25;#4 Hz
            } elsif (me.frameNotification.filtered_frame_rate_worst < 10) {
                me.frame_inc = 0.125;#8 Hz
            } elsif (me.frameNotification.filtered_frame_rate_worst < 15) {
                me.frame_inc = 0.10;#10 Hz
            } elsif (me.frameNotification.filtered_frame_rate_worst < 20) {
                me.frame_inc = 0.075;#13.3 Hz
            } elsif (me.frameNotification.filtered_frame_rate_worst < 25) {
                me.frame_inc = 0.05;#20 Hz
            } elsif (me.frameNotification.filtered_frame_rate_worst < 40) {
                me.frame_inc = 0.0333;#30 Hz
            } else {
                me.frame_inc = 0.02;#50 Hz
            }

            # Adjust timer if new value
            if (me.frame_inc != me.cur_frame_inc) {
                logprint(3,  me.Ident~": Adjust frequency to ",1/me.frame_inc, " Hz");
                me.cur_frame_inc = me.frame_inc;
                me.execTimer.restart(me.cur_frame_inc);
            }
        }
    }
};

# profiling aid: embed within a class
# and each frame call log("something") to trace time
# e.g. to create using the default log level of INFO:
#    ot = OperationTimer.new("VSD");
# or for log level debug 
#    ot = OperationTimer.new("VSD",2);
# ...
# ot.reset();
# ot.log("start");
# ... code ...
# ot.log("half way");
# ... code ...
# ot.log("finished");

OperationTimer = {
    new : func (ident="timer", level=3) {
        {
            parents: [OperationTimer],
            timestamp: maketimestamp(),
            ident: ident,
            resolution_uS: 1000.0,
            level : level,
        }
    },
    log : func( text){
        logprint(me.level, sprintf("%10s: %8.3f : %s",me.ident,  me.timestamp.elapsedUSec()/me.resolution_uS, text));
    },
    reset : func {
       me.timestamp.stamp(); 
    }
};         




var xmit = emesary.Transmitter.new("exec");
var ExecModule =  EmesaryExecutive.new("EMEXEC", xmit);
ExecModule.start();