Library globals

Source local_weather . compat_layer.nas

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000

########################################################
# compatibility layer for local weather package
# Thorsten Renk, March 2011
########################################################

# function			purpose
#
# setDefaultCloudsOff		to remove the standard Flightgear 3d clouds
# setVisibility			to set the visibility to a given value
# setLift			to set lift to given value
# setRain			to set rain to a given value
# setSnow			to set snow to a given value
# setTurbulence			to set turbulence to a given value
# setTemperature		to set temperature to a given value
# setPressure			to set pressure to a given value
# setDewpoint			to set the dewpoint to a given value
# setLight			to set light saturation to given value
# setWind			to set wind
# setWindSmoothly 		to set the wind gradually across a second
# smooth_wind_loop		(helper function for setWindSmoothly)
# create_cloud			to place a single cloud into the scenery
# create_impostor		to place an impostor sheet mimicking far clouds into the scene
# create_cloud_array		to place clouds from storage arrays into the scenery
# get_elevation			to get the terrain elevation at given coordinates
# get_elevation_vector		to get terrain elevation at given coordinate vector
# set_wxradarecho_storm		to provide info about a storm to the wxradar


# This file contains portability wrappers for the local weather system: 
#   http://wiki.flightgear.org/index.php/A_local_weather_system
#   
# This module is intended to provide a certain degree of backward compatibility for past 
# FlightGear releases, while sketching out the low level APIs used and required by the 
# local weather system, as these
# are being added to FlightGear.
#
# This file contains various workarounds for doing things that are currently not yet directly 
# supported by the core FlightGear/Nasal APIs (fgfs 2.0).
#
# Some of these workarounds are purely implemented in Nasal space, and may thus not provide sufficient
# performance in some situations.
#
# The goal is to move all such workarounds eventually  into this module, so that the high level weather modules
# only refer to this "compatibility layer" (using an "ideal API"), while this module handles 
# implementation details 
# and differences among different versions of FlightGear, so that key APIs can be ported to C++ space 
# for the sake
# of improving runtime performance and efficiency.
#
# This provides an abstraction layer that isolates the rest of the local weather system from low 
# level implementation details.
# 
# C++ developers who want to help improve the local weather system (or the FlightGear/Nasal 
# interface in general) should 
# check out this file (as well as the wiki page) for APIs or features that shall eventually be 
# re/implemented in C++ space for
# improving the local weather system.
#
# 
# This module provides a handful of helpers for dynamically querying the Nasal API of the running fgfs binary,
# so that it can make use of new APIs (where available), while still working with older fgfs versions.
#
# Note: The point of these helpers is that they should really only be used 
# by this module, and not in other parts/files of the 
# local weather system. Any hard coded special cases should be moved into this module.
#
# The compatibility layer is currently work in progress and will be extended as new Nasal 
# APIs are being added to FlightGear.

var weather_dynamics = nil;
var weather_tile_management = nil;
var compat_layer = nil;
var weather_tiles = nil;


_setlistener("/nasal/local_weather/loaded", func { 

compat_layer = local_weather;
weather_dynamics = local_weather;
weather_tile_management = local_weather;
weather_tiles = local_weather;


var result = "yes";

if (1==0) # no compatibility tests for 2.4 binary, it has the required features
	{
print("Compatibility layer: testing for hard coded support");

if (props.globals.getNode("/rendering/scene/saturation", 0) == nil)
	{result = "no"; features.can_set_light = 0;}
else
	{result = "yes"; features.can_set_light = 1;}
print("* can set light saturation:        "~result);


if (props.globals.getNode("/rendering/scene/scattering", 0) == nil)
	{result = "no"; features.can_set_scattering = 0;}
else
	{result = "yes"; features.can_set_scattering = 1;}
print("* can set horizon scattering:      "~result);

if (props.globals.getNode("/environment/terrain", 0) == nil)
	{result = "no"; features.terrain_presampling = 0;}
else
	{result = "yes"; features.terrain_presampling = 1;setprop("/environment/terrain/area[0]/enabled",1);}
print("* hard coded terrain presampling:  "~result);

if ((props.globals.getNode("/environment/terrain/area[0]/enabled",1).getBoolValue() == 1) and (features.terrain_presampling ==1))
	{result = "yes"; features.terrain_presampling_active = 1;}
else
	{result = "no"; features.terrain_presampling_active = 0;}
print("* terrain presampling initialized: "~result);


if (props.globals.getNode("/environment/config/enabled", 0) == nil)
	{result = "no"; features.can_disable_environment = 0;}
else
	{result = "yes"; features.can_disable_environment = 1;}
print("* can disable global weather:      "~result);


print("Compatibility layer: tests done.");
	}


# features of a 2.4 binary

# switch terrainsampler to active, should be initialized


features.can_set_light = 1;
features.can_set_scattering = 1;
features.terrain_presampling = 1;
features.terrain_presampling_active = 1;
features.can_disable_environment = 1;



# features of a current GIT binary

features.fast_geodinfo = 1;


# do actual startup()
local_weather.updateMenu();
local_weather.startup();

});





var setDefaultCloudsOff = func {

var layers = props.globals.getNode("/environment/clouds").getChildren("layer");
	
foreach (var l; layers)
	{
	l.getNode("coverage-type").setValue(5);
	}
	


# we store that information ourselves, so this should be zero, but rain forces us to go for an offset
setprop("/environment/clouds/layer[0]/elevation-ft",0.0);
		
# layer wrapping off
setprop("/sim/rendering/clouds3d-wrap",0);

# rain altitude limit off, detailed precipitation control on

props.globals.getNode("/environment/params/use-external-precipitation-level").setBoolValue("true");
props.globals.getNode("/environment/precipitation-control/detailed-precipitation").setBoolValue("true");


# set skydome unloading off

setprop("/sim/rendering/minimum-sky-visibility", 0.0);

# just to be sure, set other parameters off

compat_layer.setRain(0.0);
compat_layer.setSnow(0.0);
compat_layer.setLight(1.0);

}


####################################
# set visibility to given value
####################################

var setVisibility = func (vis) {

setprop("/environment/visibility-m",vis);
	
}


var setVisibilitySmoothly = func (vis) {


visibility_target = vis;
visibility_current = getprop("/environment/visibility-m");

if (smooth_visibility_loop_flag == 0)
	{
	smooth_visibility_loop_flag = 1;
	visibility_loop();
	}
}

var visibility_loop = func {

if (local_weather.local_weather_running_flag == 0) {return;}

if (visibility_target == visibility_current)
	{smooth_visibility_loop_flag = 0; return;}

if (visibility_target < visibility_current)
	{
	var vis_goal = visibility_target;
	if (vis_goal < 0.97 * visibility_current) {vis_goal = 0.97 * visibility_current;}
	}
else
	{
	var vis_goal = visibility_target;
	if (vis_goal > 1.03 * visibility_current) {vis_goal = 1.03 * visibility_current;}
	}
#	print(vis_goal, " ",local_weather.interpolated_conditions.visibility_m );
if (local_weather.interpolated_conditions.visibility_m > vis_goal)
	{setprop("/environment/visibility-m",vis_goal);}
	visibility_current = vis_goal;	

settimer( func {visibility_loop(); },0);
}


####################################
# set thermal lift to given value
####################################

var setLift = func (lift) {

setprop("/environment/local-weather-lift-fps",lift);
	
}

####################################
# set rain properties
####################################

var setRain = func (rain) {

setprop("/environment/rain-norm", rain);
}


var setRainDropletSize = func (size) {

setprop("/environment/precipitation-control/rain-droplet-size", size);
}

####################################
# set snow properties
####################################

var setSnow = func (snow) {

setprop("/environment/snow-norm", snow);
}

var setSnowFlakeSize = func (size) {

setprop("/environment/precipitation-control/snow-flake-size", size);
}



####################################
# set turbulence to given value
####################################

var setTurbulence = func (turbulence) {

var turbulence_scale = getprop("/local-weather/config/turbulence-scale");

setprop("/environment/turbulence/magnitude-norm",turbulence * turbulence_scale);
setprop("/environment/turbulence/rate-hz",3.0);
}


####################################
# set temperature to given value
####################################

var setTemperature = func (T) {

setprop("/environment/temperature-sea-level-degc",T);
}

####################################
# set pressure to given value
####################################

var setPressure = func (p) {

setprop("/environment/pressure-sea-level-inhg",p);
}

####################################
# set dewpoint to given value
####################################

var setDewpoint = func (D) {

setprop("/environment/dewpoint-sea-level-degc",D);
}

####################################
# set light saturation to given value
####################################

var setLight = func (s) {

setprop("/rendering/scene/saturation",s);
}

var setLightSmoothly = func (s) {

light_target = s;
light_current = getprop("/rendering/scene/saturation");

if (smooth_light_loop_flag == 0)
	{
	smooth_light_loop_flag = 1;
	light_loop();
	}
}

var light_loop = func {

if (local_weather.local_weather_running_flag == 0) {return;}

if (light_target == light_current)
	{smooth_light_loop_flag = 0; return;}

if (light_target < light_current)
	{
	var light_goal = light_target;
	if (light_goal < 0.97 * light_current) {light_goal = 0.97 * light_current;}
	}
else
	{
	var light_goal = light_target;
	if (light_goal > 1.03 * light_current) {light_goal = 1.03 * light_current;}
	}
	
setprop("/rendering/scene/saturation",light_goal);
light_current = light_goal;	

settimer( func {light_loop(); },0);
}


####################################
# set horizon scattering
####################################

var setScattering = func (s) {

setprop("/rendering/scene/scattering",s);
}

####################################
# set overcast haze
####################################

var setOvercast = func (o) {

setprop("/rendering/scene/overcast",o);
}


####################################
# set skydome scattering parameters
####################################

var setSkydomeShader = func (r, m, d) {

setprop("/sim/rendering/rayleigh", r);
setprop("/sim/rendering/mie", m);
setprop("/sim/rendering/dome-density",d);
}

###########################################################
# set wind to given direction and speed
###########################################################


var setWind = func (dir, speed) {

setprop("/environment/wind-from-heading-deg",dir);
setprop("/environment/wind-speed-kt",speed);
	

# this is needed to trigger the cloud drift to pick up the new wind setting
setprop("/environment/clouds/layer[0]/elevation-ft",0.0);
	
}

###########################################################
# set wind smoothly to given direction and speed
# interpolating across several frames
###########################################################

var smoothDirection = func (dir0, dir1, factor) {

var diff = ( math.mod( dir0 - dir1 + 180 + 360, 360 ) - 180 );
diff *= factor;

return math.mod( 360 + dir1 + ( diff / 2), 360);
}


var setWindSmoothly = func (dir, speed) {

var curDir = getprop("/environment/wind-from-heading-deg");
var curSpeed = getprop("/environment/wind-speed-kt");

dir = math.mod(dir, 360);

var newSpeed = (curSpeed * 9 + speed) / 10;
var newDir = smoothDirection(dir, curDir, 0.2);
 
setWind(newDir, newSpeed);

#setWind(dir, speed);	
}


###########################################################
# place a single cloud 
###########################################################

var create_cloud = func(path, lat, long, alt, heading) {

var tile_counter = getprop(lw~"tiles/tile-counter");
var buffer_flag = getprop(lw~"config/buffer-flag");
var d_max = weather_tile_management.cloud_view_distance + 1000.0;

# noctilucent clouds should not be deleted with the tile, hence they're assigned to tile zero
if (find("noctilucent",path) != -1)
	{tile_counter=0;}

# check if we deal with a convective cloud - no need to do this any more, convective clouds go via a different system

var convective_flag = 0;

#if (find("cumulus",path) != -1)
#	{
#	if ((find("alto",path) != -1) or (find("cirro", path) != -1) or (find("strato", path) != -1))
#		{convective_flag = 0;}
#	else if ((find("small",path) != -1) or (find("whisp",path) != -1)) 
#		{convective_flag = 1;}
#	else if (find("bottom",path) != -1) 
#		{convective_flag = 4;}
#	else	
#		{convective_flag = 2;}
#	
#	}
#else if (find("congestus",path) != -1)
#	{
#	if (find("bottom",path) != -1) 
#		{convective_flag = 5;}
#	else
#		{convective_flag = 3;}
#	} 

#print("path: ", path, " flag: ", convective_flag);

# first check if the cloud should be stored in the buffer
# we keep it if it is in visual range or at high altitude (where visual range is different)



# now check if we are writing from the buffer, in this case change tile index
# to buffered one

if (getprop(lw~"tmp/buffer-status") == "placing")
	{
	tile_counter = buffered_tile_index;
	}



# if the cloud is not buffered, get property tree nodes and write it 
# into the scenery

var n = props.globals.getNode("local-weather/clouds", 1);
var c = n.getChild("tile",tile_counter,1);


var cloud_number = n.getNode("placement-index").getValue();
		for (var i = cloud_number; 1; i += 1)
			if (c.getChild("cloud", i, 0) == nil)
				break;
var cl = c.getChild("cloud", i, 1);
n.getNode("placement-index").setValue(i);

var placement_index = i;

var model_number = n.getNode("model-placement-index").getValue();
var m = props.globals.getNode("models", 1);
		for (var i = model_number; 1; i += 1)
			if (m.getChild("model", i, 0) == nil)
				break;
var model = m.getChild("model", i, 1);
n.getNode("model-placement-index").setValue(i);	



var latN = cl.getNode("position/latitude-deg", 1); latN.setValue(lat);
var lonN = cl.getNode("position/longitude-deg", 1); lonN.setValue(long);
var altN = cl.getNode("position/altitude-ft", 1); altN.setValue(alt);
var hdgN = cl.getNode("orientation/true-heading-deg", 1); hdgN.setValue(heading);

cl.getNode("tile-index",1).setValue(tile_counter);

model.getNode("path", 1).setValue(path);
model.getNode("latitude-deg", 1).setValue(lat);
model.getNode("longitude-deg", 1).setValue(long);
model.getNode("elevation-ft", 1).setValue(alt);
model.getNode("heading-deg", 1).setValue(local_weather.wind.cloudlayer[0]+180.0);
model.getNode("tile-index",1).setValue(tile_counter);
model.getNode("speed-kt",1).setValue(local_weather.wind.cloudlayer[1]);
model.getNode("load", 1).remove();


#model.getNode("latitude-deg-prop", 1).setValue(latN.getPath());
#model.getNode("longitude-deg-prop", 1).setValue(lonN.getPath());
#model.getNode("elevation-ft-prop", 1).setValue(altN.getPath());
#model.getNode("heading-deg-prop", 1).setValue(hdgN.getPath());

# sort the cloud into the cloud hash array

if (buffer_flag == 1)
	{
	var cs = weather_tile_management.cloudScenery.new(tile_counter, convective_flag, cl, model);
	append(weather_tile_management.cloudSceneryArray,cs);
	}

# if weather dynamics is on, also create a timestamp property and sort the cloud hash into quadtree

if (local_weather.dynamics_flag == 1)
	{
	cs.timestamp = weather_dynamics.time_lw;
	cs.write_index = placement_index;


	if (getprop(lw~"tmp/buffer-status") == "placing")
		{
		var blat = buffered_tile_latitude;
		var blon = buffered_tile_longitude;
		var alpha = buffered_tile_alpha;
		}
	else
		{
		var blat = getprop(lw~"tiles/tmp/latitude-deg");
		var blon = getprop(lw~"tiles/tmp/longitude-deg");
		var alpha = getprop(lw~"tmp/tile-orientation-deg");
		}
	weather_dynamics.sort_into_quadtree(blat, blon, alpha, lat, long, weather_dynamics.cloudQuadtrees[tile_counter-1], cs); 
	}

}


###########################################################
# place an impostor sheet 
###########################################################

var create_impostor = func(path, lat, long, alt, heading) {

var n = props.globals.getNode("local-weather/clouds", 1);
var model_number = n.getNode("model-placement-index").getValue();
var m = props.globals.getNode("models", 1);
		for (var i = model_number; 1; i += 1)
			if (m.getChild("model", i, 0) == nil)
				break;
var model = m.getChild("model", i, 1);
n.getNode("model-placement-index").setValue(i);	


model.getNode("path", 1).setValue(path);
model.getNode("latitude-deg", 1).setValue(lat);
model.getNode("longitude-deg", 1).setValue(long);
model.getNode("elevation-ft", 1).setValue(alt);
model.getNode("heading-deg", 1).setValue(local_weather.wind.cloudlayer[0]+180.0);
model.getNode("speed-kt",1).setValue(local_weather.wind.cloudlayer[1]);
model.getNode("load", 1).remove();


var imp = weather_tile_management.cloudImpostor.new(model);
append(weather_tile_management.cloudImpostorArray,imp);


}


###########################################################
# place a  model
###########################################################

var place_model = func(path, lat, lon, alt, heading, pitch, yaw) {



var m = props.globals.getNode("models", 1);
		for (var i = 0; 1; i += 1)
			if (m.getChild("model", i, 0) == nil)
				break;
var model = m.getChild("model", i, 1);


model.getNode("path", 1).setValue(path);
model.getNode("latitude-deg", 1).setValue(lat);
model.getNode("longitude-deg", 1).setValue(lon);
model.getNode("elevation-ft", 1).setValue(alt);
model.getNode("heading-deg", 1).setValue(heading);
model.getNode("pitch-deg", 1).setValue(pitch);
model.getNode("roll-deg", 1).setValue(yaw);
model.getNode("load", 1).remove();


}

###########################################################
# place a  model with control properties
###########################################################

var place_model_controlled = func(string, path, lat, lon, alt, heading, pitch, roll) {



var m = props.globals.getNode("models", 1);
		for (var i = 0; 1; i += 1)
			if (m.getChild("model", i, 0) == nil)
				break;
var model = m.getChild("model", i, 1);


setprop("/local-weather/"~string~"/latitude-deg", lat);
setprop("/local-weather/"~string~"/longitude-deg", lon);
setprop("/local-weather/"~string~"/elevation-ft", alt);
setprop("/local-weather/"~string~"/heading-deg", heading);
setprop("/local-weather/"~string~"/pitch-deg", pitch);
setprop("/local-weather/"~string~"/roll-deg", roll);



var cmodel = props.globals.getNode("/local-weather/"~string, 1);
var latN = cmodel.getNode("latitude-deg",1);
var lonN = cmodel.getNode("longitude-deg",1);
var altN = cmodel.getNode("elevation-ft",1);
var headN = cmodel.getNode("heading-deg",1);
var pitchN = cmodel.getNode("pitch-deg",1);
var rollN = cmodel.getNode("roll-deg",1);



model.getNode("path", 1).setValue(path);
model.getNode("latitude-deg-prop", 1).setValue(latN.getPath());
model.getNode("longitude-deg-prop", 1).setValue(lonN.getPath());
model.getNode("elevation-ft-prop", 1).setValue(altN.getPath());
model.getNode("heading-deg-prop", 1).setValue(headN.getPath());
model.getNode("pitch-deg-prop", 1).setValue(pitchN.getPath());
model.getNode("roll-deg-prop", 1).setValue(rollN.getPath());
model.getNode("tile-index",1).setValue(0);
model.getNode("load", 1).remove();


#return model;
}




###########################################################
# place a single cloud using hard-coded system
###########################################################

var create_cloud_new = func(c) {



var tile_counter = getprop(lw~"tiles/tile-counter");
cloud_index = cloud_index + 1;

c.index = tile_counter;
c.cloud_index = cloud_index;

# light must be such that the top of a cloud cannot be darker than the bottom

if (c.bottom_shade > c.top_shade) {c.bottom_shade = c.top_shade;}
c.middle_shade = c.top_shade;

# write the actual cloud into the scenery


var p = props.Node.new({ "layer" : 0,
                         "index": cloud_index,
                         "lat-deg": c.lat,
                         "lon-deg": c.lon,
			 "min-sprite-width-m": c.min_width,
			 "max-sprite-width-m": c.max_width,
			 "min-sprite-height-m": c.min_height,
			 "max-sprite-height-m": c.max_height,
			 "num-sprites": c.n_sprites,
			 "min-bottom-lighting-factor": c.bottom_shade,
			 "max-bottom-lighting-factor": c.bottom_shade,
			 "min-middle-lighting-factor": c.middle_shade,
			 "min-top-lighting-factor": c.top_shade,
			 "max-top-lighting-factor": c.top_shade,
			 "alpha-factor": c.alpha_factor,
			 "min-shade-lighting-factor": c.bottom_shade,
			 "texture": c.texture_sheet,
			 "num-textures-x": c.num_tex_x,
			 "num-textures-y": c.num_tex_y,
			 "min-cloud-width-m": c.min_cloud_width,
			 "max-cloud-width-m": c.min_cloud_width,
			 "min-cloud-height-m": c.min_cloud_height + c.min_cloud_height * 0.2 * local_weather.height_bias,	
			 "max-cloud-height-m": c.min_cloud_height + c.min_cloud_height * 0.2 * local_weather.height_bias,	
			 "z-scale": c.z_scale,
			 "height-map-texture": 0,
                         "alt-ft" :  c.alt });
fgcommand("add-cloud", p);

#print("alt: ", c.alt);

# add other management properties to the hash if dynamics is on

if (local_weather.dynamics_flag == 1)
	{
	c.timestamp = weather_dynamics.time_lw;
	}


# add cloud to array

append(weather_tile_management.cloudArray,c);
	

}







###########################################################
# place a cloud layer from arrays, split across frames 
###########################################################

var create_cloud_array = func (i, clouds_path, clouds_lat, clouds_lon, clouds_alt, clouds_orientation) {

if (getprop(lw~"tmp/thread-status") != "placing") {return;}
if (getprop(lw~"tmp/convective-status") != "idle") {return;}
if ((i < 0) or (i==0)) 
	{
	if (local_weather.debug_output_flag == 1) 
		{print("Cloud placement from array finished!"); }

	# then place all clouds using the new rendering system
	if (local_weather.hardcoded_clouds_flag == 1)
		{
		var s = size(local_weather.cloudAssemblyArray);
		create_new_cloud_array(s,cloudAssemblyArray);
		}
	
	setprop(lw~"tmp/thread-status", "idle");

	# now set flag that tile has been completely processed
	var dir_index = props.globals.getNode(lw~"tiles/tmp/dir-index").getValue();

	setprop(lw~"tiles/tile["~dir_index~"]/generated-flag",2);	

	return;
	}


var k_max = 30;
var s = size(clouds_path);  

if (s < k_max) {k_max = s;}

for (var k = 0; k < k_max; k = k+1)
	{
	if (getprop(lw~"config/dynamics-flag") ==1)
		{
		cloud_mean_altitude = local_weather.clouds_mean_alt[s-k-1];
		cloud_flt = local_weather.clouds_flt[s-k-1];
		cloud_evolution_timestamp = local_weather.clouds_evolution_timestamp[s-k-1];
		}
	create_cloud(clouds_path[s-k-1], clouds_lat[s-k-1], clouds_lon[s-k-1], clouds_alt[s-k-1], clouds_orientation[s-k-1]);
	#create_cloud_new(clouds_path[s-k-1], clouds_lat[s-k-1], clouds_lon[s-k-1], clouds_alt[s-k-1], clouds_orientation[s-k-1]);
	}

setsize(clouds_path,s-k_max);
setsize(clouds_lat,s-k_max);
setsize(clouds_lon,s-k_max);
setsize(clouds_alt,s-k_max);
setsize(clouds_orientation,s-k_max);

if (getprop(lw~"config/dynamics-flag") ==1)
		{
		setsize(local_weather.clouds_mean_alt,s-k_max);
		setsize(local_weather.clouds_flt,s-k_max);
		setsize(local_weather.clouds_evolution_timestamp,s-k_max);
		}

settimer( func {create_cloud_array(i - k, clouds_path, clouds_lat, clouds_lon, clouds_alt, clouds_orientation ) }, 0 );
};


var create_new_cloud_array = func (i, cloudArray)
{




if ((i < 0) or (i==0)) 
	{
	if (local_weather.debug_output_flag == 1) 
		{print("Processing add-cloud calls finished!"); }
	return;
	}


var k_max = 20;
var s = size(cloudArray);  

if (s < k_max) {k_max = s;}

for (var k = 0; k < k_max; k = k+1)
	{
	local_weather.create_cloud_new(cloudArray[s-k-1]);
	#print(cloudArray[s-k-1].alt);
	}

setsize(cloudArray,s-k_max);



settimer( func {create_new_cloud_array(i - k, cloudArray) }, 0 );
}





###########################################################
# get terrain elevation
###########################################################

var get_elevation = func (lat, lon) {

var info = geodinfo(lat, lon);
	if (info != nil) {var elevation = info[0] * local_weather.m_to_ft;}
	else {var elevation = -1.0; }


return elevation;
}

###########################################################
# get terrain elevation vector
###########################################################

var get_elevation_array = func (lat, lon) {

var elevation = [];
var n = size(lat);


for(var i = 0; i < n; i=i+1)
	{
	append(elevation, get_elevation(lat[i], lon[i]));
	}
	

return elevation;
}

###########################################################
# set the wxradar echo of a storm
###########################################################

var set_wxradarecho_storm = func (lat, lon, base, top, radius, ref, turb, type) {

# look for the next free index in the wxradar property tree entries

var n = props.globals.getNode("/instrumentation/wxradar", 1);
		for (var i = 0; 1; i += 1)
			if (n.getChild("storm", i, 0) == nil)
				break;
var s = n.getChild("storm", i, 1);


s.getNode("latitude-deg",1).setValue(lat);
s.getNode("longitude-deg",1).setValue(lon);
s.getNode("heading-deg",1).setValue(0.0);
s.getNode("base-altitude-ft",1).setValue(base);
s.getNode("top-altitude-ft",1).setValue(top);
s.getNode("radius-nm",1).setValue(radius * m_to_nm);
s.getNode("reflectivity-norm",1).setValue(ref);
s.getNode("turbulence-norm",1).setValue(turb);
s.getNode("type",1).setValue(type);
s.getNode("show",1).setValue(1);
}

###########################################################
# remove unused echos
###########################################################

var remove_wxradar_echos = func { 

var distance_to_remove = 70000.0;

var storms = props.globals.getNode("/instrumentation/wxradar", 1).getChildren("storm");

var pos = geo.aircraft_position();

foreach (s; storms)
	{
	var d_sq = local_weather.calc_d_sq(pos.lat(), pos.lon(), s.getNode("latitude-deg").getValue(), s.getNode("longitude-deg").getValue());
	if (d_sq > distance_to_remove * distance_to_remove)
		{
		s.remove();
		}
	}

}

############################################################
# global variables
############################################################

# conversions

var nm_to_m = 1852.00;
var m_to_nm = 1.0/nm_to_m; 

# some common abbreviations

var lw = "/local-weather/";
var ec = "/environment/config/";

# storage arrays for model vector

var mvec = [];
var msize = 0;

# loop flags and variables

var smooth_visibility_loop_flag = 0;

var visibility_target = 0.0;
var visibility_current = 0.0;

var smooth_light_loop_flag = 0;

var light_target = 0.0;
var light_current = 0.0;

# available hard-coded support

var features = {};

# globals to transmit info if clouds are written from buffer

var buffered_tile_latitude = 0.0;
var buffered_tile_longitude = 0.0;
var buffered_tile_alpha = 0.0;
var buffered_tile_index = 0;

# globals to handle additional info for Cumulus cloud dynamics

var cloud_mean_altitude = 0.0;
var cloud_flt = 0.0;
var cloud_evolution_timestamp = 0.0;

# globals to handle new cloud indexing

var cloud_index = 0;