Source local_weather compat_layer.nas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
########################################################
# compatibility layer for local weather package
# Thorsten Renk, March 2011
########################################################
# function purpose
#
# setDefaultCloudsOff to remove the standard Flightgear 3d clouds
# setVisibility to set the visibility to a given value
# setLift to set lift to given value
# setRain to set rain to a given value
# setSnow to set snow to a given value
# setTurbulence to set turbulence to a given value
# setTemperature to set temperature to a given value
# setPressure to set pressure to a given value
# setDewpoint to set the dewpoint to a given value
# setLight to set light saturation to given value
# setWind to set wind
# setWindSmoothly to set the wind gradually across a second
# smooth_wind_loop (helper function for setWindSmoothly)
# create_cloud to place a single cloud into the scenery
# create_impostor to place an impostor sheet mimicking far clouds into the scene
# create_cloud_array to place clouds from storage arrays into the scenery
# get_elevation to get the terrain elevation at given coordinates
# get_elevation_vector to get terrain elevation at given coordinate vector
# set_wxradarecho_storm to provide info about a storm to the wxradar
# This file contains portability wrappers for the local weather system:
# http://wiki.flightgear.org/index.php/A_local_weather_system
#
# This module is intended to provide a certain degree of backward compatibility for past
# FlightGear releases, while sketching out the low level APIs used and required by the
# local weather system, as these
# are being added to FlightGear.
#
# This file contains various workarounds for doing things that are currently not yet directly
# supported by the core FlightGear/Nasal APIs (fgfs 2.0).
#
# Some of these workarounds are purely implemented in Nasal space, and may thus not provide sufficient
# performance in some situations.
#
# The goal is to move all such workarounds eventually into this module, so that the high level weather modules
# only refer to this "compatibility layer" (using an "ideal API"), while this module handles
# implementation details
# and differences among different versions of FlightGear, so that key APIs can be ported to C++ space
# for the sake
# of improving runtime performance and efficiency.
#
# This provides an abstraction layer that isolates the rest of the local weather system from low
# level implementation details.
#
# C++ developers who want to help improve the local weather system (or the FlightGear/Nasal
# interface in general) should
# check out this file (as well as the wiki page) for APIs or features that shall eventually be
# re/implemented in C++ space for
# improving the local weather system.
#
#
# This module provides a handful of helpers for dynamically querying the Nasal API of the running fgfs binary,
# so that it can make use of new APIs (where available), while still working with older fgfs versions.
#
# Note: The point of these helpers is that they should really only be used
# by this module, and not in other parts/files of the
# local weather system. Any hard coded special cases should be moved into this module.
#
# The compatibility layer is currently work in progress and will be extended as new Nasal
# APIs are being added to FlightGear.
var weather_dynamics = nil;
var weather_tile_management = nil;
var compat_layer = nil;
var weather_tiles = nil;
_setlistener("/nasal/local_weather/loaded", func {
compat_layer = local_weather;
weather_dynamics = local_weather;
weather_tile_management = local_weather;
weather_tiles = local_weather;
var result = "yes";
if (1==0) # no compatibility tests for 2.4 binary, it has the required features
{
print("Compatibility layer: testing for hard coded support");
if (props.globals.getNode("/rendering/scene/saturation", 0) == nil)
{result = "no"; features.can_set_light = 0;}
else
{result = "yes"; features.can_set_light = 1;}
print("* can set light saturation: "~result);
if (props.globals.getNode("/rendering/scene/scattering", 0) == nil)
{result = "no"; features.can_set_scattering = 0;}
else
{result = "yes"; features.can_set_scattering = 1;}
print("* can set horizon scattering: "~result);
if (props.globals.getNode("/environment/terrain", 0) == nil)
{result = "no"; features.terrain_presampling = 0;}
else
{result = "yes"; features.terrain_presampling = 1;setprop("/environment/terrain/area[0]/enabled",1);}
print("* hard coded terrain presampling: "~result);
if ((props.globals.getNode("/environment/terrain/area[0]/enabled",1).getBoolValue() == 1) and (features.terrain_presampling ==1))
{result = "yes"; features.terrain_presampling_active = 1;}
else
{result = "no"; features.terrain_presampling_active = 0;}
print("* terrain presampling initialized: "~result);
if (props.globals.getNode("/environment/config/enabled", 0) == nil)
{result = "no"; features.can_disable_environment = 0;}
else
{result = "yes"; features.can_disable_environment = 1;}
print("* can disable global weather: "~result);
print("Compatibility layer: tests done.");
}
# features of a 2.4 binary
# switch terrainsampler to active, should be initialized
features.can_set_light = 1;
features.can_set_scattering = 1;
features.terrain_presampling = 1;
features.terrain_presampling_active = 1;
features.can_disable_environment = 1;
# features of a current GIT binary
features.fast_geodinfo = 1;
# do actual startup()
local_weather.updateMenu();
local_weather.startup();
});
var setDefaultCloudsOff = func {
var layers = props.globals.getNode("/environment/clouds").getChildren("layer");
foreach (var l; layers)
{
l.getNode("coverage-type").setValue(5);
}
# we store that information ourselves, so this should be zero, but rain forces us to go for an offset
setprop("/environment/clouds/layer[0]/elevation-ft",0.0);
# layer wrapping off
setprop("/sim/rendering/clouds3d-wrap",0);
# rain altitude limit off, detailed precipitation control on
props.globals.getNode("/environment/params/use-external-precipitation-level").setBoolValue("true");
props.globals.getNode("/environment/precipitation-control/detailed-precipitation").setBoolValue("true");
# set skydome unloading off
setprop("/sim/rendering/minimum-sky-visibility", 0.0);
# just to be sure, set other parameters off
compat_layer.setRain(0.0);
compat_layer.setSnow(0.0);
compat_layer.setLight(1.0);
}
####################################
# set visibility to given value
####################################
var setVisibility = func (vis) {
setprop("/environment/visibility-m",vis);
}
var setVisibilitySmoothly = func (vis) {
visibility_target = vis;
visibility_current = getprop("/environment/visibility-m");
if (smooth_visibility_loop_flag == 0)
{
smooth_visibility_loop_flag = 1;
visibility_loop();
}
}
var visibility_loop = func {
if (local_weather.local_weather_running_flag == 0) {return;}
if (visibility_target == visibility_current)
{smooth_visibility_loop_flag = 0; return;}
if (visibility_target < visibility_current)
{
var vis_goal = visibility_target;
if (vis_goal < 0.97 * visibility_current) {vis_goal = 0.97 * visibility_current;}
}
else
{
var vis_goal = visibility_target;
if (vis_goal > 1.03 * visibility_current) {vis_goal = 1.03 * visibility_current;}
}
# print(vis_goal, " ",local_weather.interpolated_conditions.visibility_m );
if (local_weather.interpolated_conditions.visibility_m > vis_goal)
{setprop("/environment/visibility-m",vis_goal);}
visibility_current = vis_goal;
settimer( func {visibility_loop(); },0);
}
####################################
# set thermal lift to given value
####################################
var setLift = func (lift) {
setprop("/environment/local-weather-lift-fps",lift);
}
####################################
# set rain properties
####################################
var setRain = func (rain) {
setprop("/environment/rain-norm", rain);
}
var setRainDropletSize = func (size) {
setprop("/environment/precipitation-control/rain-droplet-size", size);
}
####################################
# set snow properties
####################################
var setSnow = func (snow) {
setprop("/environment/snow-norm", snow);
}
var setSnowFlakeSize = func (size) {
setprop("/environment/precipitation-control/snow-flake-size", size);
}
####################################
# set turbulence to given value
####################################
var setTurbulence = func (turbulence) {
var turbulence_scale = getprop("/local-weather/config/turbulence-scale");
setprop("/environment/turbulence/magnitude-norm",turbulence * turbulence_scale);
setprop("/environment/turbulence/rate-hz",3.0);
}
####################################
# set temperature to given value
####################################
var setTemperature = func (T) {
setprop("/environment/temperature-sea-level-degc",T);
}
####################################
# set pressure to given value
####################################
var setPressure = func (p) {
setprop("/environment/pressure-sea-level-inhg",p);
}
####################################
# set dewpoint to given value
####################################
var setDewpoint = func (D) {
setprop("/environment/dewpoint-sea-level-degc",D);
}
####################################
# set light saturation to given value
####################################
var setLight = func (s) {
setprop("/rendering/scene/saturation",s);
}
var setLightSmoothly = func (s) {
light_target = s;
light_current = getprop("/rendering/scene/saturation");
if (smooth_light_loop_flag == 0)
{
smooth_light_loop_flag = 1;
light_loop();
}
}
var light_loop = func {
if (local_weather.local_weather_running_flag == 0) {return;}
if (light_target == light_current)
{smooth_light_loop_flag = 0; return;}
if (light_target < light_current)
{
var light_goal = light_target;
if (light_goal < 0.97 * light_current) {light_goal = 0.97 * light_current;}
}
else
{
var light_goal = light_target;
if (light_goal > 1.03 * light_current) {light_goal = 1.03 * light_current;}
}
setprop("/rendering/scene/saturation",light_goal);
light_current = light_goal;
settimer( func {light_loop(); },0);
}
####################################
# set horizon scattering
####################################
var setScattering = func (s) {
setprop("/rendering/scene/scattering",s);
}
####################################
# set overcast haze
####################################
var setOvercast = func (o) {
setprop("/rendering/scene/overcast",o);
}
####################################
# set skydome scattering parameters
####################################
var setSkydomeShader = func (r, m, d) {
setprop("/sim/rendering/rayleigh", r);
setprop("/sim/rendering/mie", m);
setprop("/sim/rendering/dome-density",d);
}
###########################################################
# set wind to given direction and speed
###########################################################
var setWind = func (dir, speed) {
setprop("/environment/wind-from-heading-deg",dir);
setprop("/environment/wind-speed-kt",speed);
# this is needed to trigger the cloud drift to pick up the new wind setting
setprop("/environment/clouds/layer[0]/elevation-ft",0.0);
}
###########################################################
# set wind smoothly to given direction and speed
# interpolating across several frames
###########################################################
var smoothDirection = func (dir0, dir1, factor) {
var diff = ( math.mod( dir0 - dir1 + 180 + 360, 360 ) - 180 );
diff *= factor;
return math.mod( 360 + dir1 + ( diff / 2), 360);
}
var setWindSmoothly = func (dir, speed) {
var curDir = getprop("/environment/wind-from-heading-deg");
var curSpeed = getprop("/environment/wind-speed-kt");
dir = math.mod(dir, 360);
var newSpeed = (curSpeed * 9 + speed) / 10;
var newDir = smoothDirection(dir, curDir, 0.2);
setWind(newDir, newSpeed);
#setWind(dir, speed);
}
###########################################################
# place a single cloud
###########################################################
var create_cloud = func(path, lat, long, alt, heading) {
var tile_counter = getprop(lw~"tiles/tile-counter");
var buffer_flag = getprop(lw~"config/buffer-flag");
var d_max = weather_tile_management.cloud_view_distance + 1000.0;
# noctilucent clouds should not be deleted with the tile, hence they're assigned to tile zero
if (find("noctilucent",path) != -1)
{tile_counter=0;}
# check if we deal with a convective cloud - no need to do this any more, convective clouds go via a different system
var convective_flag = 0;
#if (find("cumulus",path) != -1)
# {
# if ((find("alto",path) != -1) or (find("cirro", path) != -1) or (find("strato", path) != -1))
# {convective_flag = 0;}
# else if ((find("small",path) != -1) or (find("whisp",path) != -1))
# {convective_flag = 1;}
# else if (find("bottom",path) != -1)
# {convective_flag = 4;}
# else
# {convective_flag = 2;}
#
# }
#else if (find("congestus",path) != -1)
# {
# if (find("bottom",path) != -1)
# {convective_flag = 5;}
# else
# {convective_flag = 3;}
# }
#print("path: ", path, " flag: ", convective_flag);
# first check if the cloud should be stored in the buffer
# we keep it if it is in visual range or at high altitude (where visual range is different)
# now check if we are writing from the buffer, in this case change tile index
# to buffered one
if (getprop(lw~"tmp/buffer-status") == "placing")
{
tile_counter = buffered_tile_index;
}
# if the cloud is not buffered, get property tree nodes and write it
# into the scenery
var n = props.globals.getNode("local-weather/clouds", 1);
var c = n.getChild("tile",tile_counter,1);
var cloud_number = n.getNode("placement-index").getValue();
for (var i = cloud_number; 1; i += 1)
if (c.getChild("cloud", i, 0) == nil)
break;
var cl = c.getChild("cloud", i, 1);
n.getNode("placement-index").setValue(i);
var placement_index = i;
var model_number = n.getNode("model-placement-index").getValue();
var m = props.globals.getNode("models", 1);
for (var i = model_number; 1; i += 1)
if (m.getChild("model", i, 0) == nil)
break;
var model = m.getChild("model", i, 1);
n.getNode("model-placement-index").setValue(i);
var latN = cl.getNode("position/latitude-deg", 1); latN.setValue(lat);
var lonN = cl.getNode("position/longitude-deg", 1); lonN.setValue(long);
var altN = cl.getNode("position/altitude-ft", 1); altN.setValue(alt);
var hdgN = cl.getNode("orientation/true-heading-deg", 1); hdgN.setValue(heading);
cl.getNode("tile-index",1).setValue(tile_counter);
model.getNode("path", 1).setValue(path);
model.getNode("latitude-deg", 1).setValue(lat);
model.getNode("longitude-deg", 1).setValue(long);
model.getNode("elevation-ft", 1).setValue(alt);
model.getNode("heading-deg", 1).setValue(local_weather.wind.cloudlayer[0]+180.0);
model.getNode("tile-index",1).setValue(tile_counter);
model.getNode("speed-kt",1).setValue(local_weather.wind.cloudlayer[1]);
model.getNode("load", 1).remove();
#model.getNode("latitude-deg-prop", 1).setValue(latN.getPath());
#model.getNode("longitude-deg-prop", 1).setValue(lonN.getPath());
#model.getNode("elevation-ft-prop", 1).setValue(altN.getPath());
#model.getNode("heading-deg-prop", 1).setValue(hdgN.getPath());
# sort the cloud into the cloud hash array
if (buffer_flag == 1)
{
var cs = weather_tile_management.cloudScenery.new(tile_counter, convective_flag, cl, model);
append(weather_tile_management.cloudSceneryArray,cs);
}
# if weather dynamics is on, also create a timestamp property and sort the cloud hash into quadtree
if (local_weather.dynamics_flag == 1)
{
cs.timestamp = weather_dynamics.time_lw;
cs.write_index = placement_index;
if (getprop(lw~"tmp/buffer-status") == "placing")
{
var blat = buffered_tile_latitude;
var blon = buffered_tile_longitude;
var alpha = buffered_tile_alpha;
}
else
{
var blat = getprop(lw~"tiles/tmp/latitude-deg");
var blon = getprop(lw~"tiles/tmp/longitude-deg");
var alpha = getprop(lw~"tmp/tile-orientation-deg");
}
weather_dynamics.sort_into_quadtree(blat, blon, alpha, lat, long, weather_dynamics.cloudQuadtrees[tile_counter-1], cs);
}
}
###########################################################
# place an impostor sheet
###########################################################
var create_impostor = func(path, lat, long, alt, heading) {
var n = props.globals.getNode("local-weather/clouds", 1);
var model_number = n.getNode("model-placement-index").getValue();
var m = props.globals.getNode("models", 1);
for (var i = model_number; 1; i += 1)
if (m.getChild("model", i, 0) == nil)
break;
var model = m.getChild("model", i, 1);
n.getNode("model-placement-index").setValue(i);
model.getNode("path", 1).setValue(path);
model.getNode("latitude-deg", 1).setValue(lat);
model.getNode("longitude-deg", 1).setValue(long);
model.getNode("elevation-ft", 1).setValue(alt);
model.getNode("heading-deg", 1).setValue(local_weather.wind.cloudlayer[0]+180.0);
model.getNode("speed-kt",1).setValue(local_weather.wind.cloudlayer[1]);
model.getNode("load", 1).remove();
var imp = weather_tile_management.cloudImpostor.new(model);
append(weather_tile_management.cloudImpostorArray,imp);
}
###########################################################
# place a model
###########################################################
var place_model = func(path, lat, lon, alt, heading, pitch, yaw) {
var m = props.globals.getNode("models", 1);
for (var i = 0; 1; i += 1)
if (m.getChild("model", i, 0) == nil)
break;
var model = m.getChild("model", i, 1);
model.getNode("path", 1).setValue(path);
model.getNode("latitude-deg", 1).setValue(lat);
model.getNode("longitude-deg", 1).setValue(lon);
model.getNode("elevation-ft", 1).setValue(alt);
model.getNode("heading-deg", 1).setValue(heading);
model.getNode("pitch-deg", 1).setValue(pitch);
model.getNode("roll-deg", 1).setValue(yaw);
model.getNode("load", 1).remove();
}
###########################################################
# place a model with control properties
###########################################################
var place_model_controlled = func(string, path, lat, lon, alt, heading, pitch, roll) {
var m = props.globals.getNode("models", 1);
for (var i = 0; 1; i += 1)
if (m.getChild("model", i, 0) == nil)
break;
var model = m.getChild("model", i, 1);
setprop("/local-weather/"~string~"/latitude-deg", lat);
setprop("/local-weather/"~string~"/longitude-deg", lon);
setprop("/local-weather/"~string~"/elevation-ft", alt);
setprop("/local-weather/"~string~"/heading-deg", heading);
setprop("/local-weather/"~string~"/pitch-deg", pitch);
setprop("/local-weather/"~string~"/roll-deg", roll);
var cmodel = props.globals.getNode("/local-weather/"~string, 1);
var latN = cmodel.getNode("latitude-deg",1);
var lonN = cmodel.getNode("longitude-deg",1);
var altN = cmodel.getNode("elevation-ft",1);
var headN = cmodel.getNode("heading-deg",1);
var pitchN = cmodel.getNode("pitch-deg",1);
var rollN = cmodel.getNode("roll-deg",1);
model.getNode("path", 1).setValue(path);
model.getNode("latitude-deg-prop", 1).setValue(latN.getPath());
model.getNode("longitude-deg-prop", 1).setValue(lonN.getPath());
model.getNode("elevation-ft-prop", 1).setValue(altN.getPath());
model.getNode("heading-deg-prop", 1).setValue(headN.getPath());
model.getNode("pitch-deg-prop", 1).setValue(pitchN.getPath());
model.getNode("roll-deg-prop", 1).setValue(rollN.getPath());
model.getNode("tile-index",1).setValue(0);
model.getNode("load", 1).remove();
#return model;
}
###########################################################
# place a single cloud using hard-coded system
###########################################################
var create_cloud_new = func(c) {
var tile_counter = getprop(lw~"tiles/tile-counter");
cloud_index = cloud_index + 1;
c.index = tile_counter;
c.cloud_index = cloud_index;
# light must be such that the top of a cloud cannot be darker than the bottom
if (c.bottom_shade > c.top_shade) {c.bottom_shade = c.top_shade;}
c.middle_shade = c.top_shade;
# write the actual cloud into the scenery
var p = props.Node.new({ "layer" : 0,
"index": cloud_index,
"lat-deg": c.lat,
"lon-deg": c.lon,
"min-sprite-width-m": c.min_width,
"max-sprite-width-m": c.max_width,
"min-sprite-height-m": c.min_height,
"max-sprite-height-m": c.max_height,
"num-sprites": c.n_sprites,
"min-bottom-lighting-factor": c.bottom_shade,
"max-bottom-lighting-factor": c.bottom_shade,
"min-middle-lighting-factor": c.middle_shade,
"min-top-lighting-factor": c.top_shade,
"max-top-lighting-factor": c.top_shade,
"alpha-factor": c.alpha_factor,
"min-shade-lighting-factor": c.bottom_shade,
"texture": c.texture_sheet,
"num-textures-x": c.num_tex_x,
"num-textures-y": c.num_tex_y,
"min-cloud-width-m": c.min_cloud_width,
"max-cloud-width-m": c.min_cloud_width,
"min-cloud-height-m": c.min_cloud_height + c.min_cloud_height * 0.2 * local_weather.height_bias,
"max-cloud-height-m": c.min_cloud_height + c.min_cloud_height * 0.2 * local_weather.height_bias,
"z-scale": c.z_scale,
"height-map-texture": 0,
"alt-ft" : c.alt });
fgcommand("add-cloud", p);
#print("alt: ", c.alt);
# add other management properties to the hash if dynamics is on
if (local_weather.dynamics_flag == 1)
{
c.timestamp = weather_dynamics.time_lw;
}
# add cloud to array
append(weather_tile_management.cloudArray,c);
}
###########################################################
# place a cloud layer from arrays, split across frames
###########################################################
var create_cloud_array = func (i, clouds_path, clouds_lat, clouds_lon, clouds_alt, clouds_orientation) {
if (getprop(lw~"tmp/thread-status") != "placing") {return;}
if (getprop(lw~"tmp/convective-status") != "idle") {return;}
if ((i < 0) or (i==0))
{
if (local_weather.debug_output_flag == 1)
{print("Cloud placement from array finished!"); }
# then place all clouds using the new rendering system
if (local_weather.hardcoded_clouds_flag == 1)
{
var s = size(local_weather.cloudAssemblyArray);
create_new_cloud_array(s,cloudAssemblyArray);
}
setprop(lw~"tmp/thread-status", "idle");
# now set flag that tile has been completely processed
var dir_index = props.globals.getNode(lw~"tiles/tmp/dir-index").getValue();
setprop(lw~"tiles/tile["~dir_index~"]/generated-flag",2);
return;
}
var k_max = 30;
var s = size(clouds_path);
if (s < k_max) {k_max = s;}
for (var k = 0; k < k_max; k = k+1)
{
if (getprop(lw~"config/dynamics-flag") ==1)
{
cloud_mean_altitude = local_weather.clouds_mean_alt[s-k-1];
cloud_flt = local_weather.clouds_flt[s-k-1];
cloud_evolution_timestamp = local_weather.clouds_evolution_timestamp[s-k-1];
}
create_cloud(clouds_path[s-k-1], clouds_lat[s-k-1], clouds_lon[s-k-1], clouds_alt[s-k-1], clouds_orientation[s-k-1]);
#create_cloud_new(clouds_path[s-k-1], clouds_lat[s-k-1], clouds_lon[s-k-1], clouds_alt[s-k-1], clouds_orientation[s-k-1]);
}
setsize(clouds_path,s-k_max);
setsize(clouds_lat,s-k_max);
setsize(clouds_lon,s-k_max);
setsize(clouds_alt,s-k_max);
setsize(clouds_orientation,s-k_max);
if (getprop(lw~"config/dynamics-flag") ==1)
{
setsize(local_weather.clouds_mean_alt,s-k_max);
setsize(local_weather.clouds_flt,s-k_max);
setsize(local_weather.clouds_evolution_timestamp,s-k_max);
}
settimer( func {create_cloud_array(i - k, clouds_path, clouds_lat, clouds_lon, clouds_alt, clouds_orientation ) }, 0 );
};
var create_new_cloud_array = func (i, cloudArray)
{
if ((i < 0) or (i==0))
{
if (local_weather.debug_output_flag == 1)
{print("Processing add-cloud calls finished!"); }
return;
}
var k_max = 20;
var s = size(cloudArray);
if (s < k_max) {k_max = s;}
for (var k = 0; k < k_max; k = k+1)
{
local_weather.create_cloud_new(cloudArray[s-k-1]);
#print(cloudArray[s-k-1].alt);
}
setsize(cloudArray,s-k_max);
settimer( func {create_new_cloud_array(i - k, cloudArray) }, 0 );
}
###########################################################
# get terrain elevation
###########################################################
var get_elevation = func (lat, lon) {
var info = geodinfo(lat, lon);
if (info != nil) {var elevation = info[0] * local_weather.m_to_ft;}
else {var elevation = -1.0; }
return elevation;
}
###########################################################
# get terrain elevation vector
###########################################################
var get_elevation_array = func (lat, lon) {
var elevation = [];
var n = size(lat);
for(var i = 0; i < n; i=i+1)
{
append(elevation, get_elevation(lat[i], lon[i]));
}
return elevation;
}
###########################################################
# set the wxradar echo of a storm
###########################################################
var set_wxradarecho_storm = func (lat, lon, base, top, radius, ref, turb, type) {
# look for the next free index in the wxradar property tree entries
var n = props.globals.getNode("/instrumentation/wxradar", 1);
for (var i = 0; 1; i += 1)
if (n.getChild("storm", i, 0) == nil)
break;
var s = n.getChild("storm", i, 1);
s.getNode("latitude-deg",1).setValue(lat);
s.getNode("longitude-deg",1).setValue(lon);
s.getNode("heading-deg",1).setValue(0.0);
s.getNode("base-altitude-ft",1).setValue(base);
s.getNode("top-altitude-ft",1).setValue(top);
s.getNode("radius-nm",1).setValue(radius * m_to_nm);
s.getNode("reflectivity-norm",1).setValue(ref);
s.getNode("turbulence-norm",1).setValue(turb);
s.getNode("type",1).setValue(type);
s.getNode("show",1).setValue(1);
}
###########################################################
# remove unused echos
###########################################################
var remove_wxradar_echos = func {
var distance_to_remove = 70000.0;
var storms = props.globals.getNode("/instrumentation/wxradar", 1).getChildren("storm");
var pos = geo.aircraft_position();
foreach (s; storms)
{
var d_sq = local_weather.calc_d_sq(pos.lat(), pos.lon(), s.getNode("latitude-deg").getValue(), s.getNode("longitude-deg").getValue());
if (d_sq > distance_to_remove * distance_to_remove)
{
s.remove();
}
}
}
############################################################
# global variables
############################################################
# conversions
var nm_to_m = 1852.00;
var m_to_nm = 1.0/nm_to_m;
# some common abbreviations
var lw = "/local-weather/";
var ec = "/environment/config/";
# storage arrays for model vector
var mvec = [];
var msize = 0;
# loop flags and variables
var smooth_visibility_loop_flag = 0;
var visibility_target = 0.0;
var visibility_current = 0.0;
var smooth_light_loop_flag = 0;
var light_target = 0.0;
var light_current = 0.0;
# available hard-coded support
var features = {};
# globals to transmit info if clouds are written from buffer
var buffered_tile_latitude = 0.0;
var buffered_tile_longitude = 0.0;
var buffered_tile_alpha = 0.0;
var buffered_tile_index = 0;
# globals to handle additional info for Cumulus cloud dynamics
var cloud_mean_altitude = 0.0;
var cloud_flt = 0.0;
var cloud_evolution_timestamp = 0.0;
# globals to handle new cloud indexing
var cloud_index = 0;