Source orbital_target.nas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
###########################################################################
# simulation of a faraway orbital target (needs handover to spacecraft-specific
# code for close range)
#
# SPDX-License-Identifier: GPL-2.0-or-later
#
# NOTE! This copyright does *not* cover user models that use these Nasal
# services by normal function calls - this is merely considered normal use
# of the code, and does *not* fall under the heading of "derived work."
#
# Thorsten Renk 2016-2019
###########################################################################
var orbitalTarget = {
new: func(altitude, inclination, node_longitude, anomaly) {
var t = { parents: [orbitalTarget] };
t.altitude = altitude;
t.radius = 20908323.0 * 0.3048 + t.altitude;
t.GM = 398759391386476.0;
#t.GM = 398600441800000.0;
t.period = 2.0 * math.pi * math.sqrt(math.pow(t.radius, 3.0)/ t.GM);
t.inclination = inclination;
t.inc_rad = t.inclination * math.pi/180.0;
t.l_vec = [math.sin(t.inc_rad), 0.0, math.cos(t.inc_rad)];
t.node_longitude = node_longitude;
t.nl_rad = t.node_longitude * math.pi/180.0;
t.initial_nl_rad = t.nl_rad;
var l_tmp = t.l_vec[0];
t.l_vec[0] = math.sin(t.nl_rad) * l_tmp;
t.l_vec[1] = -math.cos(t.nl_rad) * l_tmp;
t.anomaly = anomaly;
t.anomaly_rad = t.anomaly * math.pi/180.0;
t.initial_anomaly_rad = t.anomaly_rad;
t.delta_lon = 0.0;
t.update_time = 0.1;
t.running_flag = 0;
t.elapsed_time = 0.0;
t.delta_time = 0.0;
t.label = "";
print ("Orbital Period: ", t.period);
# Coefficients for the J3 altitude variation
var inc_var = t.inclination/60.0;
#print ("inc_var:", inc_var);
t.coeff1 = (10268. - 0.99579 * (t.altitude / 1000.0)) * inc_var;
t.coeff2 = 0.212 * 2.0 * math.pi;
#t.node_drift = -4361.26 * 1./math.pow(t.radius/1000.0 ,2.0) * math.cos(t.inc_rad);
t.node_drift = -2.16732e+9 /math.pow(t.radius/1000.0, 3.48908) * math.cos(t.inc_rad);
print ("Drift rate: ", t.node_drift);
return t;
},
set_anomaly: func (anomaly) {
t.anomaly = anomaly;
t.anomaly_rad = t.anomaly * math.pi/180.0;
},
set_delta_lon: func (dl) {
t.delta_lon = dl;
},
list: func {
print("Radius: ", me.radius, " period: ", me.period);
print("L_vector: ", me.l_vec[0], " ", me.l_vec[1], " ", me.l_vec[2]);
print("L_norm: ", math.sqrt(me.l_vec[0] * me.l_vec[0] + me.l_vec[1] * me.l_vec[1] + me.l_vec[2] * me.l_vec[2]));
var pos = me.get_inertial_pos();
print("Inertial: ", pos[0], " ", pos[1], " ", pos[2]);
print("Rad: ", math.sqrt(pos[0] * pos[0] + pos[1] * pos[1] + pos[2] * pos[2]));
var lla = me.get_latlonalt();
print("Lat: ", lla[0], " lon: ", lla[1], " alt: ", lla[2]);
},
evolve: func {
var dt = getprop("/sim/time/delta-sec");
#var speedup = getprop("/sim/speed-up");
#dt = dt * speedup;
me.anomaly_rad = me.anomaly_rad + dt/me.period * 2.0 * math.pi;
if (me.anomaly_rad > 2.0 * math.pi)
{
me.anomaly_rad = me.anomaly_rad - 2.0 * math.pi;
}
me.anomaly = me.anomaly_rad * 180.0/math.pi;
me.delta_lon = me.delta_lon + dt * 0.00418333333333327;
me.node_longitude = me.node_longitude + me.node_drift * dt;
me.nl_rad = me.node_longitude * math.pi/180.0;
me.l_vec = [math.sin(me.inc_rad), 0.0, math.cos(me.inc_rad)];
var l_tmp = me.l_vec[0];
me.l_vec[0] = math.sin(me.nl_rad) * l_tmp;
me.l_vec[1] = -math.cos(me.nl_rad) * l_tmp;
#print (me.label);
},
get_inertial_pos: func {
return me.compute_inertial_pos(me.anomaly_rad, me.nl_rad);
},
get_inertial_pos_at_time: func (time) {
var anomaly_rad = me.initial_anomaly_rad + (time - me.delta_time)/me.period * 2.0 * math.pi;
while (anomaly_rad > 2.0 * math.pi)
{
anomaly_rad = anomaly_rad - 2.0 * math.pi;
}
var nl_rad = me.initial_nl_rad + me.node_drift * (time - me.delta_time) * math.pi/180.0;
return me.compute_inertial_pos(anomaly_rad, nl_rad);
},
get_inertial_speed: func () {
# obtain via numerical discretization from two points
var anomaly_rad = me.anomaly_rad;
while (anomaly_rad > 2.0 * math.pi)
{
anomaly_rad = anomaly_rad - 2.0 * math.pi;
}
var pos1 = me.compute_inertial_pos(anomaly_rad, me.nl_rad);
anomaly_rad = me.anomaly_rad + 0.1/me.period * 2.0 * math.pi;
while (anomaly_rad > 2.0 * math.pi)
{
anomaly_rad = anomaly_rad - 2.0 * math.pi;
}
var pos2 = me.compute_inertial_pos(anomaly_rad, me.nl_rad);
var vx = (pos2[0] - pos1[0])/0.1;
var vy = (pos2[1] - pos1[1])/0.1;
var vz = (pos2[2] - pos1[2])/0.1;
return [vx, vy, vz];
},
get_inertial_speed_at_time: func (time) {
# obtain via numerical discretization from two points
var anomaly_rad = me.initial_anomaly_rad + (time- me.delta_time)/me.period * 2.0 * math.pi;
while (anomaly_rad > 2.0 * math.pi)
{
anomaly_rad = anomaly_rad - 2.0 * math.pi;
}
var nl_rad = me.initial_nl_rad + me.node_drift * (time - me.delta_time) * math.pi/180.0;
var pos1 = me.compute_inertial_pos(anomaly_rad, nl_rad);
anomaly_rad = me.initial_anomaly_rad + ((time - me.delta_time) + 0.1)/me.period * 2.0 * math.pi;
while (anomaly_rad > 2.0 * math.pi)
{
anomaly_rad = anomaly_rad - 2.0 * math.pi;
}
nl_rad = me.initial_nl_rad + me.node_drift * ((time - me.delta_time) +0.1) * math.pi/180.0;
var pos2 = me.compute_inertial_pos(anomaly_rad, nl_rad);
var vx = (pos2[0] - pos1[0])/0.1;
var vy = (pos2[1] - pos1[1])/0.1;
var vz = (pos2[2] - pos1[2])/0.1;
return [vx, vy, vz];
},
compute_inertial_pos: func (anomaly_rad, nl_rad) {
# J3 variation around radius
while (anomaly_rad > 2.0 * math.pi)
{
anomaly_rad = anomaly_rad - 2.0 * math.pi;
}
while (anomaly_rad < 0.0)
{
anomaly_rad = anomaly_rad + 2.0 * math.pi;
}
var r_corr = me.coeff1 * math.exp(- math.pow(((anomaly_rad - math.pi)/ me.coeff2),2.0));
#r_corr = 0.0;
#print (r_corr);
# movement around equatorial orbit
var x = (me.radius + r_corr) * math.cos(anomaly_rad);
var y = (me.radius + r_corr) * math.sin(anomaly_rad);
var z = 0;
# tilt with inclination
z = y * math.sin(me.inc_rad);
y = y * math.cos(me.inc_rad);
# rotate with node longitude
var xp = x * math.cos(nl_rad) - y * math.sin(nl_rad);
var yp = x * math.sin(nl_rad) + y * math.cos(nl_rad);
# this is a good bit of trickery to capture leading J3 dynamics
var corr_200 = -2.6e-5 * me.inclination + 1.00321;
var corr = corr_200 * (1.0 + (me.altitude/1000.0-200.0) * 6e-7);
corr = 1.0 + (0.64 * (corr -1.0));
#print ("Corr200 is now:", corr_200);
#print ("Corr is now:", corr);
#print ("Altitude: ", me.altitude);
var radius_orig = math.sqrt(xp * xp + yp * yp + z* z);
z /= corr;
var radius_corr = math.sqrt(xp * xp + yp * yp + z* z);
xp *= radius_orig/radius_corr;
yp *= radius_orig/radius_corr;
z *= radius_orig/radius_corr;
return [xp, yp, z];
},
get_latlonalt: func {
var coordinates = geo.Coord.new();
var inertial_pos = me.get_inertial_pos();
coordinates.set_xyz(inertial_pos[0], inertial_pos[1], inertial_pos[2]);
coordinates.set_lon(coordinates.lon() - me.delta_lon);
return [coordinates.lat(), coordinates.lon(), coordinates.alt()];
},
start: func {
if (me.running_flag == 1) {return;}
me.running_flag = 1;
me.run();
},
stop: func {
me.running_flag = 0;
},
run: func {
me.evolve (me.update_time);
if (me.running_flag == 1)
{settimer(func me.run(), 0);}
},
test_suite: func {
var time = 0;
var radius = 0;
var pos = [];
for (var i = 0; i< 300; i=i+1)
{
time = i * 60;
pos = me.get_inertial_pos_at_time(time);
radius = math.sqrt(pos[0] * pos[0] + pos[1] * pos[1] + pos[2] * pos[2]);
print (time, " ", radius);
}
},
};