Source local_weather weather_dynamics.nas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
########################################################
# routines to simulate cloud wind drift and evolution
# Thorsten Renk, October 2010
########################################################
# function purpose
#
# get_windfield to get the current wind in the tile
# timing_loop to provide accurate timing information for wind drift calculations
# quadtree_loop to manage drift of clouds in the field of view
# weather_dynamics_loop to manage drift of weather effects, tile centers and interpolation points
# convective_loop to regularly recreate convective clouds
# generate_quadtree_structure to generate a quadtree data structure used for managing the visual field
# sort_into_quadtree to sort objects into a quadtree structure
# sorting_recursion to recursively sort into a quadree (helper)
# quadtree_recursion to search the quadtree for objects in the visual field
# check_visibility to check if a quadrant is currently visible
# move_tile to move tile coordinates in the wind
# get_cartesian to get local Cartesian coordinates out of coordinates
####################################################
# get the windfield for a given location and altitude
# (currently constant, but supposed to be local later)
####################################################
var get_windfield = func (tile_index) {
if (hardcoded_clouds_flag == 1)
{
var wind_direction = local_weather.wind.current[0];
var windspeed = local_weather.wind.current[1] * kt_to_ms;
var windfield_x = -windspeed * math.sin(wind_direction * math.pi/180.0);
var windfield_y = -windspeed * math.cos(wind_direction * math.pi/180.0);
return [windfield_x,windfield_y];
}
if ((local_weather.wind_model_flag == 1) or (local_weather.wind_model_flag == 3))
{
var windspeed = tile_wind_speed[0] * kt_to_ms;
var wind_direction = tile_wind_direction[0];
}
else if ((local_weather.wind_model_flag ==2) or (local_weather.wind_model_flag == 4) or (local_weather.wind_model_flag == 5))
{
var windspeed = tile_wind_speed[tile_index-1] * kt_to_ms;
var wind_direction = tile_wind_direction[tile_index-1];
}
var windfield_x = -windspeed * math.sin(wind_direction * math.pi/180.0);
var windfield_y = -windspeed * math.cos(wind_direction * math.pi/180.0);
return [windfield_x,windfield_y];
}
var get_wind_direction = func (tile_index) {
if (hardcoded_clouds_flag == 1)
{
return local_weather.wind.current[0];
}
if ((local_weather.wind_model_flag == 1) or (local_weather.wind_model_flag == 3))
{
return tile_wind_direction[0];
}
else if ((local_weather.wind_model_flag ==2) or (local_weather.wind_model_flag == 4) or (local_weather.wind_model_flag == 5))
{
return tile_wind_direction[tile_index-1];
}
}
var get_wind_speed = func (tile_index) {
if (hardcoded_clouds_flag == 1)
{
return local_weather.wind.current[1];
}
if ((local_weather.wind_model_flag == 1) or (local_weather.wind_model_flag == 3))
{
return tile_wind_speed[0];
}
else if ((local_weather.wind_model_flag ==2) or (local_weather.wind_model_flag == 4) or (local_weather.wind_model_flag == 5))
{
return tile_wind_speed[tile_index-1];
}
}
########################################################
# timing loop
# this gets the accurate time since the start of weather dynamics
# and hence the timestamps for cloud evolution since
# the available elapsed-time-sec is not accurate enough
########################################################
var timing_loop = func {
if (local_weather.local_weather_running_flag == 0) {return;}
dt_lw = getprop("/sim/time/delta-sec");
time_lw = time_lw + dt_lw;
# this is a really ugly hack to get the sun angle information to the shaders
# directly referencing /sim/time/sun-angle-rad as uniform doesn't
# work since that is a tied property
#var sun_angle = 1.57079632675 - getprop("/sim/time/sun-angle-rad");
#var terminator_offset = sun_angle / 0.017451 * 110000.0;# + 250000.0;
#setprop("/environment/terminator-relative-position-m",terminator_offset);
var viewpos = geo.viewer_position();
# setprop("/environment/alt-in-haze-m", getprop("/environment/ground-haze-thickness-m")-viewpos.alt());
#setprop("/sim/rendering/eye-altitude-m", viewpos.alt());
if (local_weather.presampling_flag == 1)
{
var mean_terrain_elevation_m = ft_to_m * local_weather.current_mean_alt ; }
else
{var mean_terrain_elevation_m = 0.0;}
setprop("/environment/mean-terrain-elevation-m", mean_terrain_elevation_m);
if (getprop(lw~"timing-loop-flag") ==1) {settimer(timing_loop, 0);}
}
###########################################################
# quadtree loop
# the quadtree loop is a fast loop updating the position
# of visible objects in the field of view only
###########################################################
var quadtree_loop = func {
if (local_weather.local_weather_running_flag == 0) {return;}
var vangle = 0.55 * getprop("/sim/current-view/field-of-view");
var viewdir = getprop("/sim/current-view/goal-heading-offset-deg");
var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
var course = getprop("orientation/heading-deg");
cloud_counter = 0;
# pre-calculate trigonometry
tan_vangle = math.tan(vangle * math.pi/180.0);
# use the quadtree to move clouds inside the field of view
var tiles = props.globals.getNode(lw~"tiles").getChildren("tile");
foreach (var t; tiles)
{
var generated_flag = t.getNode("generated-flag").getValue();
if ((generated_flag == 1) or (generated_flag ==2))
{
var index = t.getNode("tile-index").getValue();
current_tile_index_wd = index;
var blat = t.getNode("latitude-deg").getValue();
var blon = t.getNode("longitude-deg").getValue();
var alpha = t.getNode("orientation-deg").getValue();
var xy_vec = get_cartesian(blat, blon, alpha, lat, lon);
var beta = course - alpha - viewdir ;
cos_beta = math.cos(beta * math.pi/180.0);
sin_beta = math.sin(beta * math.pi/180.0);
plane_x = xy_vec[0]; plane_y = xy_vec[1];
windfield = get_windfield(index);
quadtree_recursion(cloudQuadtrees[index-1],0,1,0.0,0.0);
}
}
# dynamically adjust the range of the processed view field
# if there are plenty of moving clouds nearby, no one pays attention to the small motion of distant clouds
# price to pay is that some clouds appear to jump once they get into range
if (cloud_counter < 0.5 * max_clouds_in_loop) {view_distance = view_distance * 1.1;}
else if (cloud_counter > max_clouds_in_loop) {view_distance = view_distance * 0.9;}
if (view_distance > weather_tile_management.cloud_view_distance) {view_distance = weather_tile_management.cloud_view_distance;}
#print(cloud_counter, " ", view_distance/1000.0);
# shift the tile centers with the windfield
var tiles = props.globals.getNode("local-weather/tiles", 1).getChildren("tile");
foreach (var t; tiles) {move_tile(t);}
# loop over
if (getprop(lw~"dynamics-loop-flag") ==1) {settimer(quadtree_loop, 0);}
}
###########################################################
# weather_dynamics_loop
# the weather dynamics loop is a slow loop updating
# position and state of invisible objects, currently
# effect volumes and weather stations
###########################################################
var weather_dynamics_loop = func (index, cindex) {
if (local_weather.local_weather_running_flag == 0) {return;}
var n = 20;
var nc = 1;
var csize = weather_tile_management.n_cloudSceneryArray;
var i_max = index + n;
if (i_max > local_weather.n_effectVolumeArray) {i_max = local_weather.n_effectVolumeArray;}
var ecount = 0;
for (var i = index; i < i_max; i = i+1)
{
var ev = local_weather.effectVolumeArray[i];
if (ev.index !=0)
{ev.move();}
if ((ev.lift_flag == 2) and (rand() < 0.05) and (local_weather.presampling_flag == 1))
{
if (local_weather.dynamical_convection_flag ==1)
{
ev.correct_altitude_and_age();
if (ev.flt > 1.2) # beyond 1.0, sink is still active
{
local_weather.effectVolumeArray = weather_tile_management.delete_from_vector(local_weather.effectVolumeArray,i);
local_weather.n_effectVolumeArray = local_weather.n_effectVolumeArray - 1;
i = i-1; i_max = i_max -1; ecount = ecount + 1;
}
}
else
{ev.correct_altitude();}
}
}
setprop(lw~"effect-volumes/number",getprop(lw~"effect-volumes/number")- ecount);
index = index + n;
if (i >= local_weather.n_effectVolumeArray) {index = 0;}
var ccount = 0;
if (csize > 0)
{
var j_max = cindex + nc;
if (j_max > csize -1) {j_max = csize-1;}
for (var j = cindex; j < j_max; j = j+1)
{
var cs = weather_tile_management.cloudSceneryArray[j];
#cs.move();
if (cs.type !=0)
{
if ((rand() < 0.1) and (local_weather.presampling_flag == 1))
{
if (local_weather.dynamical_convection_flag ==1)
{
cs.correct_altitude_and_age();
if (cs.flt > 1.0) # the cloud has reached its maximum age and decays
{
cs.removeNodes();
weather_tile_management.cloudSceneryArray = weather_tile_management.delete_from_vector(weather_tile_management.cloudSceneryArray,j);
ccount = ccount + 1;
}
}
else
{
cs.correct_altitude();
}
}
}
}
cindex = cindex + nc;
if (j >= csize) {cindex = 0;}
}
foreach (var s; local_weather.weatherStationArray)
{
s.move();
}
foreach (var a; local_weather.atmosphereIpointArray)
{
a.move();
}
if (getprop(lw~"dynamics-loop-flag") ==1) {settimer( func {weather_dynamics_loop(index, cindex); },0);}
}
###########################################################
# convective evolution loop
###########################################################
var convective_loop = func {
if (local_weather.local_weather_running_flag == 0) {return;}
# a 30 second loop needs a different strategy to end, otherwise there is trouble if it is restarted while still running
if (convective_loop_kill_flag == 1)
{convective_loop_kill_flag = 0; return;}
var cloud_respawning_interval_s = 30.0;
if (getprop(lw~"tmp/thread-status") == "placing")
{if (getprop(lw~"convective-loop-flag") ==1) {settimer( func {convective_loop()}, 5.0);} return;}
# open the system for write status
setprop(lw~"tmp/buffer-status","placing");
if (local_weather.debug_output_flag == 1)
{print("Respawning convective clouds...");}
for(var i = 0; i < 9; i = i + 1)
{
var index = getprop(lw~"tiles/tile["~i~"]/tile-index");
if ((index == -1) or (index == 0)) {continue;}
if (getprop(lw~"tiles/tile["~i~"]/generated-flag") != 2)
{continue;}
var strength = tile_convective_strength[index-1];
var alt = tile_convective_altitude[index-1];
var n = weather_tiles.get_n(strength);
if (local_weather.detailed_clouds_flag == 1)
{n = int(0.7 * n);}
n = n/cloud_convective_lifetime_s * cloud_respawning_interval_s * math.sqrt(0.35);
var n_res = n - int(n);
n = int(n);
if (rand() < n_res) {n=n+1;}
if (local_weather.debug_output_flag == 1)
{print("Tile: ", index, " n: ", n);}
var lat = getprop(lw~"tiles/tile["~i~"]/latitude-deg");
var lon = getprop(lw~"tiles/tile["~i~"]/longitude-deg");
var alpha = getprop(lw~"tiles/tile["~i~"]/orientation-deg");
compat_layer.buffered_tile_latitude = lat;
compat_layer.buffered_tile_longitude = lon;
compat_layer.buffered_tile_alpha = alpha;
compat_layer.buffered_tile_index = index;
setprop(lw~"tmp/buffer-tile-index", index);
if (local_weather.presampling_flag == 1)
{var alt_offset = local_weather.alt_20_array[index -1];}
else
{var alt_offset = getprop(lw~"tmp/tile-alt-offset-ft");}
local_weather.recreate_cumulus(lat,lon, alt + alt_offset, alpha, n, 20000.0, index);
}
# close the write process
setprop(lw~"tmp/buffer-status","idle");
if (getprop(lw~"convective-loop-flag") ==1) {settimer(convective_loop, cloud_respawning_interval_s);}
}
###########################################################
# generate quadtree structure
###########################################################
var generate_quadtree_structure = func (depth, tree_base_vec) {
var c_vec = [];
for (var i=0; i<4; i=i+1)
{
if (depth == quadtree_depth)
{var c = [];}
else
{var c = generate_quadtree_structure(depth+1, tree_base_vec);}
if (depth==0)
{append(tree_base_vec,c); }
else
{append(c_vec,c); }
}
if (depth ==0) {return tree_base_vec;} else {return c_vec;}
}
###########################################################
# sort into quadtree
###########################################################
var sort_into_quadtree = func (blat, blon, alpha, lat, lon, tree, object) {
var xy_vec = get_cartesian (blat, blon, alpha, lat, lon);
sorting_recursion (xy_vec[0], xy_vec[1], tree, object, 0);
}
var sorting_recursion = func (x, y, tree, object, depth) {
if (depth == quadtree_depth+1) {append(tree,object); return;}
var length_scale = 20000.0 / math.pow(2,depth);
# print("depth: ", depth, "x: ", x, "y: ",y);
if (y > 0.0)
{
if (x < 0.0)
{var v = tree[0]; x = x + 0.5 * length_scale; y = y - 0.5 * length_scale;}
else
{var v = tree[1]; x = x - 0.5 * length_scale; y = y - 0.5 * length_scale;}
}
else
{
if (x < 0.0)
{var v = tree[2]; x = x + 0.5 * length_scale; y = y + 0.5 * length_scale;}
else
{var v = tree[3]; x = x - 0.5 * length_scale; y = y + 0.5 * length_scale;}
}
sorting_recursion(x, y, v, object, depth+1);
}
####################################################
# quadtree recursive search
####################################################
var quadtree_recursion = func (tree, depth, flag, qx, qy) {
# flag = 0: quadrant invisible, stop search
# flag = 1: quadrant partially visible, continue search with visibility tests
# flag = 2: quadrant fully visible, no further visibility test needed
if (depth == quadtree_depth +1)
{
foreach (var c; tree)
{
c.move();
c.to_target_alt();
cloud_counter = cloud_counter + 1;
}
return;
}
for (var i =0; i<4; i=i+1)
{
if (flag==2) {quadtree_recursion(tree[i], depth+1, flag, qx, qy);}
else if (flag==1)
{
# compute the subquadrant coordinates
var length_scale = 20000.0 / math.pow(2,depth);
if (i==0) {var qxnew = qx - 0.5 * length_scale; var qynew = qy + 0.5 * length_scale;}
else if (i==1) {var qxnew = qx + 0.5 * length_scale; var qynew = qy + 0.5 * length_scale;}
else if (i==2) {var qxnew = qx - 0.5 * length_scale; var qynew = qy - 0.5 * length_scale;}
else if (i==3) {var qxnew = qx + 0.5 * length_scale; var qynew = qy - 0.5 * length_scale;}
var newflag = check_visibility(qxnew,qynew, length_scale);
if (newflag!=0) {quadtree_recursion(tree[i], depth+1, newflag, qxnew, qynew);}
}
}
}
####################################################
# quadrant visibility test
####################################################
var check_visibility = func (qx,qy, length_scale) {
# (qx,qy) are the quadrant coordinates in tile local Cartesian
# beta is the plane course in the tile local Cartesian
# the function returns a flag: 0: invisible 1: partially visible, track further 2: fully visible
# first translate/rotate (qx,qy) into the plane system
qx = qx - plane_x; qy = qy - plane_y;
var x = qx * cos_beta - qy * sin_beta;
var y = qy * cos_beta + qx * sin_beta;
# now get the maximum and minimum quadrant extensions
var ang_factor = abs(cos_beta) + abs(sin_beta); # a square seen from an angle extends larger
var xmax = x + 0.5 * length_scale * ang_factor;
var xmin = x - 0.5 * length_scale * ang_factor;
var ymax = y + 0.5 * length_scale * ang_factor;
var ymin = y - 0.5 * length_scale * ang_factor;
# now do visibility checks
if ((ymax < 0.0) and (ymin < 0.0)) # quadrant is behind us, we can never see it
{return 0;}
if (ymin > view_distance) # the quadrant is beyond visible range
{return 0;}
var xcomp_min = ymin * tan_vangle;
var xcomp_max = ymax * tan_vangle;
if ((ymax > 0.0) and (ymin < 0.0)) # object is at most partially visible, check if in visual cone at ymax
{
if ((xmax < -xcomp_max) and (xmin < -xcomp_max)) {return 0;}
if ((xmax > xcomp_max) and (xmin > xcomp_max)) {return 0;}
return 1;
}
# now we know the quadrant must be in front
# check if invisible
if ((xmax < -xcomp_max) and (xmin < -xcomp_max)) {return 0;}
if ((xmax > xcomp_max) and (xmin > xcomp_max)) {return 0;}
# check if completely visible
if ((xmax > -xcomp_min) and (xmin > -xcomp_min) and (xmax < xcomp_min) and (xmin < xcomp_min))
{return 2;}
# at this point, it must be partially visible
return 1;
}
####################################################
# move a tile
####################################################
var move_tile = func (t) {
# get the old spacetime position of the tile
var lat_old = t.getNode("latitude-deg").getValue();
var lon_old = t.getNode("longitude-deg").getValue();
var timestamp = t.getNode("timestamp-sec").getValue();
var tile_index = t.getNode("tile-index").getValue();
# if the tile is not yet generated, we use the windfield of the tile we're in
if (tile_index == -1)
{
tile_index = props.globals.getNode(lw~"tiles").getChild("tile",4).getNode("tile-index").getValue();
}
# get windfield and time since last update
var windfield = get_windfield(tile_index);
var dt = time_lw - timestamp;
# update the spacetime position of the tile
t.getNode("latitude-deg",1).setValue(lat_old + windfield[1] * dt * local_weather.m_to_lat);
t.getNode("longitude-deg",1).setValue(lon_old + windfield[0] * dt * local_weather.m_to_lon);
t.getNode("timestamp-sec",1).setValue(weather_dynamics.time_lw);
}
###########################################################
# get local Cartesian coordinates
###########################################################
var get_cartesian = func (blat, blon, alpha, lat, lon) {
var xy_vec = [];
var phi = alpha * math.pi/180.0;
var delta_lat = lat - blat;
var delta_lon = lon - blon;
var x1 = delta_lon * lon_to_m;
var y1 = delta_lat * lat_to_m;
var x = x1 * math.cos(phi) - y1 * math.sin(phi);
var y = y1 * math.cos(phi) + x1 * math.sin(phi);
append(xy_vec,x);
append(xy_vec,y);
return xy_vec;
}
################################
# globals, constants, properties
################################
var lat_to_m = 110952.0; # latitude degrees to meters
var m_to_lat = 9.01290648208234e-06; # meters to latitude degrees
var ft_to_m = 0.30480;
var m_to_ft = 1.0/ft_to_m;
var inhg_to_hp = 33.76389;
var hp_to_inhg = 1.0/inhg_to_hp;
var kt_to_ms = 0.514;
var ms_to_kt = 1./kt_to_ms;
var lon_to_m = 0.0; # needs to be calculated dynamically
var m_to_lon = 0.0; # we do this on startup
# abbreviations
var lw = "/local-weather/";
# globals
var time_lw = 0.0;
var dt_lw = 0.0;
var max_clouds_in_loop = 250;
var cloud_max_vertical_speed_fts = 30.0;
var cloud_convective_lifetime_s = 1800.0; # max. lifetime of convective clouds
var convective_loop_kill_flag = 0;
# the quadtree structure
var cloudQuadtrees = [];
var quadtree_depth = 3;
# the wind info for the individual weather tiles
# (used for 'constant in tile' wind model)
var tile_wind_direction = [];
var tile_wind_speed = [];
var tile_convective_altitude = [];
var tile_convective_strength = [];
# define these as global, as we need to evaluate them only once per frame
# but use them over and over
var tan_vangle = 0;
var cos_beta = 0;
var sin_beta = 0;
var plane_x = 0;
var plane_y = 0;
var windfield = [];
var current_tile_index_wd = 0;
var cloud_counter = 0;
var view_distance = 30000.0;
# create the loop flags
setprop(lw~"timing-loop-flag",0);
setprop(lw~"dynamics-loop-flag",0);