Source geo.nas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# geo functions
# -------------------------------------------------------------------------------------------------
#
#
# geo.Coord class
# -------------------------------------------------------------------------------------------------
#
# geo.Coord.new([<coord>]) ... class that holds and maintains geographical coordinates
# can be initialized with another geo.Coord instance
#
# SETTER METHODS:
#
# .set(<coord>) ... sets coordinates from another geo.Coord instance
#
# .set_lat(<num>) ... functions for setting latitude/longitude/altitude
# .set_lon(<num>)
# .set_alt(<num>) ..this is in meters
# .set_latlon(<num>, <num> [, <num>]) (altitude (meters) is optional; default=0)
#
# .set_x(<num>) ... functions for setting cartesian x/y/z coordinates
# .set_y(<num>)
# .set_z(<num>)
# .set_xyz(<num>, <num>, <num>)
#
#
# GETTER METHODS:
#
# .lat()
# .lon() ... functions for getting lat/lon/alt
# .alt() ... returns altitude in m
# .latlon() ... returns vector [<lat>, <lon>, <alt>]
#
# .x() ... functions for reading cartesian coords (in m)
# .y()
# .z()
# .xyz() ... returns vector [<x>, <y>, <z>]
#
#
# QUERY METHODS:
#
# .is_defined() ... returns whether the coords are defined
# .dump() ... outputs coordinates
# .course_to(<coord>) ... returns course to another geo.Coord instance (degree)
# .distance_to(<coord>) ... returns distance in m along Earth curvature, ignoring altitudes
# useful for map distance
# .direct_distance_to(<coord>) ... distance in m direct, considers altitude,
# but cuts through Earth surface
# .greatcircle_distance_to(<coord>, <coord>) ... returns distance to a great circle (in m along Earth curvature)
# defined by two points
# .horizon() ... returns distance to the horizon in m along Earth curvature, ignoring altitudes
#
#
# MANIPULATION METHODS:
#
# .apply_course_distance(<course>, <distance>) ... moves the coord distance in meters in course direction (true)
#
#
#
#
# -------------------------------------------------------------------------------------------------
#
# geo.aircraft_position() ... returns current aircraft position as geo.Coord
# geo.viewer_position() ... returns viewer position as geo.Coord
# geo.click_position() ... returns last click coords as geo.Coord or nil before first click
#
# geo.tile_path(<lat>, <lon>) ... returns tile path string (e.g. "w130n30/w123n37/942056.stg")
# geo.elevation(<lat>, <lon> [, <top:10000>])
# ... returns elevation in meter for given lat/lon, or nil on error;
# <top> is the altitude at which the intersection test starts
#
# geo.normdeg(<angle>) ... returns angle normalized to 0 <= angle < 360
# geo.normdeg180(<angle>) ... returns angle normalized to -180 < angle <= 360
#
# geo.put_model(<path>, <lat>, <lon> [, <elev:nil> [, <hdg:0> [, <pitch:0> [, <roll:0>]]]]);
# ... put model <path> at location <lat>/<lon> with given elevation
# (optional, default: surface). <hdg>/<pitch>/<roll> are optional
# and default to zero.
# geo.put_model(<path>, <coord> [, <hdg:0> [, <pitch:0> [, <roll:0>]]]);
# ... same as above, but lat/lon/elev are taken from a Coord object
var EPSILON = 1e-15;
var ERAD = 6378138.12; # Earth radius (m)
# class that maintains one set of geographical coordinates
#
var Coord = {
new: func(copy = nil) {
var m = { parents: [Coord] };
m._pdirty = 1; # polar
m._cdirty = 1; # cartesian
m._lat = nil; # in radian
m._lon = nil; #
m._alt = nil; # ASL
m._x = nil; # in m
m._y = nil;
m._z = nil;
if (copy != nil)
m.set(copy);
return m;
},
_cupdate: func {
me._cdirty or return;
var xyz = geodtocart(me._lat * R2D, me._lon * R2D, me._alt);
me._x = xyz[0];
me._y = xyz[1];
me._z = xyz[2];
me._cdirty = 0;
},
_pupdate: func {
me._pdirty or return;
var lla = carttogeod(me._x, me._y, me._z);
me._lat = lla[0] * D2R;
me._lon = lla[1] * D2R;
me._alt = lla[2];
me._pdirty = 0;
},
x: func { me._cupdate(); me._x },
y: func { me._cupdate(); me._y },
z: func { me._cupdate(); me._z },
xyz: func { me._cupdate(); [me._x, me._y, me._z] },
lat: func { me._pupdate(); me._lat * R2D }, # return in degree
lon: func { me._pupdate(); me._lon * R2D },
alt: func { me._pupdate(); me._alt },
latlon: func { me._pupdate(); [me._lat * R2D, me._lon * R2D, me._alt] },
set_x: func(x) { me._cupdate(); me._pdirty = 1; me._x = x; me },
set_y: func(y) { me._cupdate(); me._pdirty = 1; me._y = y; me },
set_z: func(z) { me._cupdate(); me._pdirty = 1; me._z = z; me },
set_lat: func(lat) { me._pupdate(); me._cdirty = 1; me._lat = lat * D2R; me },
set_lon: func(lon) { me._pupdate(); me._cdirty = 1; me._lon = lon * D2R; me },
set_alt: func(alt) { me._pupdate(); me._cdirty = 1; me._alt = alt; me },
set: func(c) {
c._pupdate();
me._lat = c._lat;
me._lon = c._lon;
me._alt = c._alt;
me._cdirty = 1;
me._pdirty = 0;
me;
},
set_latlon: func(lat, lon, alt = 0) {
me._lat = lat * D2R;
me._lon = lon * D2R;
me._alt = alt;
me._cdirty = 1;
me._pdirty = 0;
me;
},
set_xyz: func(x, y, z) {
me._x = x;
me._y = y;
me._z = z;
me._pdirty = 1;
me._cdirty = 0;
me;
},
apply_course_distance: func(course, dist) {
me._pupdate();
course *= D2R;
dist /= ERAD;
if (dist < 0.0) {
dist = abs(dist);
course = course - math.pi;
}
me._lat = math.asin(math.sin(me._lat) * math.cos(dist)
+ math.cos(me._lat) * math.sin(dist) * math.cos(course));
if (math.cos(me._lat) > EPSILON)
me._lon = math.pi - math.mod(math.pi - me._lon
- math.asin(math.sin(course) * math.sin(dist)
/ math.cos(me._lat)), 2 * math.pi);
me._cdirty = 1;
me;
},
course_to: func(dest) {
me._pupdate();
dest._pupdate();
if (me._lat == dest._lat and me._lon == dest._lon)
return 0;
var dlon = dest._lon - me._lon;
var ret = nil;
call(func ret = math.mod(math.atan2(math.sin(dlon) * math.cos(dest._lat),
math.cos(me._lat) * math.sin(dest._lat)
- math.sin(me._lat) * math.cos(dest._lat)
* math.cos(dlon)), 2 * math.pi) * R2D, nil, var err = []);
if (size(err)) {
debug.printerror(err);
debug.dump(me._lat, me._lon, dlon, dest._lat, dest._lon, "--------------------------");
}
return ret;
},
# arc distance on an earth sphere; doesn't consider altitude
distance_to: func(dest) {
me._pupdate();
dest._pupdate();
if (me._lat == dest._lat and me._lon == dest._lon)
return 0;
var a = math.sin((me._lat - dest._lat) * 0.5);
var o = math.sin((me._lon - dest._lon) * 0.5);
return 2.0 * ERAD * math.asin(math.sqrt(a * a + math.cos(me._lat)
* math.cos(dest._lat) * o * o));
},
direct_distance_to: func(dest) {
me._cupdate();
dest._cupdate();
var dx = dest._x - me._x;
var dy = dest._y - me._y;
var dz = dest._z - me._z;
return math.sqrt(dx * dx + dy * dy + dz * dz);
},
# arc distance on an earth sphere to the great circle passing by A and B; doesn't consider altitude
greatcircle_distance_to: func(destA, destB) {
me._pupdate();
destA._pupdate();
destB._pupdate();
# AB is not a circle but a point
if (destA._lat == destB._lat and destA._lon == destB._lon) {
return me.distance_to(destA);
}
var ca1 = math.cos(destA._lon);
var cd1 = math.cos(destA._lat);
var sa1 = math.sin(destA._lon);
var sd1 = math.sin(destA._lat);
var ca2 = math.cos(destB._lon);
var cd2 = math.cos(destB._lat);
var sa2 = math.sin(destB._lon);
var sd2 = math.sin(destB._lat);
var sa12 = math.sin(destA._lon - destB._lon);
var ca3 = math.cos(me._lon);
var cd3 = math.cos(me._lat);
var sa3 = math.sin(me._lon);
var sd3 = math.sin(me._lat);
# this is sin(greatcircle_dist) * sin(arcAB)
var sDsAB = cd3 * sa3 * (ca2 * cd2 * sd1 - ca1 * cd1 * sd2 )
+ ca3 * cd3 * ( cd1 * sa1 * sd2 - cd2 * sa2 * sd1 )
- cd1 * cd2 * sd3 * sa12;
# direct calculation of sin(arcAB) to not call sin(arcsin(distance_to))
var a = math.sin((destA._lat - destB._lat) * 0.5);
var o = math.sin((destA._lon - destB._lon) * 0.5);
var hs12 = a * a + cd1 * cd2 * o * o;
var hc12 = 1.0 - hs12;
# AB is undertermined; a great circle should be defined with non-colinear vectors
if (hs12*hc12 == 0.0) {
die("Great circles are defined with non-colinear vectors");
}
return ERAD * math.abs( math.asin( 0.5 * sDsAB / math.sqrt( hs12 * hc12 ) ) );
},
# arc distance on an earth sphere to the horizon
horizon: func() {
me._pupdate();
if (me._alt < 0.0) {
return 0.0;
}
else {
return ERAD*math.acos(ERAD/(ERAD+me._alt));
}
},
is_defined: func {
return !(me._cdirty and me._pdirty);
},
dump: func {
if (me._cdirty and me._pdirty)
print("Coord.dump(): coordinates undefined");
me._cupdate();
me._pupdate();
printf("x=%f y=%f z=%f lat=%f lon=%f alt=%f",
me.x(), me.y(), me.z(), me.lat(), me.lon(), me.alt());
},
};
# normalize degree to 0 <= angle < 360
#
var normdeg = func(angle) {
while (angle < 0)
angle += 360;
while (angle >= 360)
angle -= 360;
return angle;
}
# normalize degree to -180 < angle <= 180
#
var normdeg180 = func(angle) {
while (angle <= -180)
angle += 360;
while (angle > 180)
angle -= 360;
return angle;
}
var tile_index = func(lat, lon) {
return tileIndex(lat, lon);
}
var format = func(lat, lon) {
sprintf("%s%03d%s%02d", lon < 0 ? "w" : "e", abs(lon), lat < 0 ? "s" : "n", abs(lat));
}
var tile_path = func(lat, lon) {
var p = tilePath(lat, lon) ~ "/" ~ tileIndex(lat, lon) ~ ".stg";
}
var put_model = func(path, c, arg...) {
call(_put_model, [path] ~ (isa(c, Coord) ? c.latlon() : [c]) ~ arg);
}
var _put_model = func(path, lat, lon, elev_m = nil, hdg = 0, pitch = 0, roll = 0) {
if (elev_m == nil)
elev_m = elevation(lat, lon);
if (elev_m == nil)
die("geo.put_model(): cannot get elevation for " ~ lat ~ "/" ~ lon);
fgcommand("add-model", var n = props.Node.new({ "path": path,
"latitude-deg": lat, "longitude-deg": lon, "elevation-m": elev_m,
"heading-deg": hdg, "pitch-deg": pitch, "roll-deg": roll,
}));
return props.globals.getNode(n.getNode("property").getValue());
}
var elevation = func(lat, lon, maxalt = 10000) {
var d = geodinfo(lat, lon, maxalt);
return d == nil ? nil : d[0];
}
var click_coord = Coord.new();
_setlistener("/sim/signals/click", func {
var lat = getprop("/sim/input/click/latitude-deg");
var lon = getprop("/sim/input/click/longitude-deg");
var elev = getprop("/sim/input/click/elevation-m");
click_coord.set_latlon(lat, lon, elev);
});
var click_position = func {
return click_coord.is_defined() ? Coord.new(click_coord) : nil;
}
var aircraft_position = func {
var lat = getprop("/position/latitude-deg");
var lon = getprop("/position/longitude-deg");
var alt = getprop("/position/altitude-ft") * FT2M;
return Coord.new().set_latlon(lat, lon, alt);
}
var viewer_position = func {
var x = getprop("/sim/current-view/viewer-x-m");
var y = getprop("/sim/current-view/viewer-y-m");
var z = getprop("/sim/current-view/viewer-z-m");
return Coord.new().set_xyz(x, y, z);
}
# A object to handle differential positioned searches:
# searchCmd executes and returns the actual search,
# onAdded and onRemoved are callbacks,
# and obj is a "me" reference (defaults to "me" in the
# caller's namespace). If searchCmd returns nil, nothing
# happens, i.e. the diff is cancelled.
var PositionedSearch = {
new: func(searchCmd, onAdded, onRemoved, obj=nil) {
return {
parents:[PositionedSearch],
obj: obj == nil ? caller(1)[0]["me"] : obj,
searchCmd: searchCmd,
onAdded: onAdded,
onRemoved: onRemoved,
result: [],
};
},
_equals: func(a,b) {
return a == b; # positioned objects are created once
#return (a == b or a.id == b.id);
},
condense: func(vec) {
var ret = [];
foreach (var e; vec)
if (e != nil) append(ret, e);
return ret;
},
diff: func(old, new) {
if (new == nil)
return [old, [], []];
var removed = old~[]; #copyvec
var added = new~[];
# Mark common elements from removed and added:
forindex (OUTER; var i; removed)
forindex (var j; new)
if (removed[i] != nil and added[j] != nil and me._equals(removed[i], added[j])) {
removed[i] = added[j] = nil;
continue OUTER;
}
# And remove those common elements, returning the result:
return [new, me.condense(removed), me.condense(added)];
},
update: func(searchCmd=nil) {
if (searchCmd == nil) searchCmd = me.searchCmd;
if (me._equals == PositionedSearch._equals) {
# Optimized search using C code
var old = me.result~[]; #copyvec
me.result = call(searchCmd, nil, me.obj);
if (me.result == nil)
{ me.result = old; return }
if (typeof(me.result) != 'vector') die("geo.PositionedSearch(): A searchCmd must return a vector of elements or nil !!"); # TODO: Maybe make this a hash instead to wrap a vector, so that we can implement basic type-checking - e.g. doing isa(PositionedSearchResult, me.result) would be kinda neat and could help troubleshooting
else
positioned.diff( old,
me.result,
func call(me.onAdded, arg, me.obj),
func call(me.onRemoved, arg, me.obj) );
} else {
(me.result, var removed, var added) = me.diff(me.result, call(searchCmd, nil, me.obj));
foreach (var e; removed)
call(me.onRemoved, [e], me.obj);
foreach (var e; added)
call(me.onAdded, [e], me.obj);
}
},
# this is the worst case scenario: switching from 640 to 320 (or vice versa)
test: func(from=640, to=320) {
var s= geo.PositionedSearch.new(
func positioned.findWithinRange(from, 'fix'),
func print('added:', arg[0].id),
func print('removed:', arg[0].id)
);
debug.benchmark('Toggle '~from~'nm/'~to~'nm', func {
s.update();
s.update( func positioned.findWithinRange(to, 'fix') );
}); # ~ takes
}, # of test
};