Library globals

Source local_weather . local_weather.nas

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765

########################################################
# routines to set up, transform and manage local weather
# Thorsten Renk, June 2011
# thermal model by Patrice Poly, April 2010
########################################################

# function			purpose
#
# calc_geo			to compute the latitude to meter conversion
# calc_d_sq			to compute a distance square in local Cartesian approximation
# effect_volume_loop		to check if the aircraft has entered an effect volume
# assemble_effect_array 	to store the size of the effect volume array
# add_vectors			to add two vectors in polar coordinates
# wind_altitude_interpolation 	to interpolate aloft winds in altitude
# wind_interpolation		to interpolate aloft winds in altitude and position
# get_slowdown_fraction		to compute the effect of boundary layer wind slowdown
# interpolation_loop		to continuously interpolate weather parameters between stations 
# thermal_lift_start		to start the detailed thermal model
# thermal_lift_loop		to manage the detailed thermal lift model
# thermal_lift_stop		to end the detailed thermal lift model
# wave_lift_start		to start the detailed wave lift model
# wave_lift_loop		to manage the detailed wave lift model
# wave_lift_stop		to end the detailed wave lift model
# effect_volume_start		to manage parameters when an effect volume is entered
# effect_volume_stop		to manage parameters when an effect volume is left
# ts_factor			(helper function for thermal lift model)
# tl_factor			(helper function for thermal lift model)
# calcLift_max			to calculate the maximal available thermal lift for given altitude
# calcLift			to calculate the thermal lift at aircraft position
# calcWaveLift			to calculate wave lift at aircraft position
# create_cloud_vec		to place a single cloud into an array to be written later
# clear_all			to remove all clouds, effect volumes and weather stations and stop loops
# create_detailed_cumulus_cloud	to place multiple cloudlets into a box based on a size parameter
# create_cumulonimbus_cloud	to place multiple cloudlets into a box 
# create_cumulonimbus_cloud_rain to place multiple cloudlets into a box and add a rain layer beneath
# create_cumosys		(wrapper to place a convective cloud system based on terrain coverage)
# cumulus_loop			to place 25 Cumulus clouds each frame
# create_cumulus		to place a convective cloud system based on terrain coverage
# recreate_cumulus		to respawn convective clouds as part of the convective dynamics algorithm
# cumulus_exclusion_layer	to create a layer with 'holes' left for thunderstorm placement
# create_rise_clouds		to create a barrier cloud system
# create_streak			to create a cloud streak
# create_hollow_layer		to create a cloud layer in a hollow cylinder (better for performance)
# create_cloudbox		to create a sophisticated cumulus cloud with different textures (experimental)
# terrain_presampling_start	to initialize terrain presampling
# terrain_presampling_loop 	to sample 25 terrain points per frame
# terrain_presampling		to sample terrain elevation at a random point within specified area
# terrain_presampling_analysis	to analyze terrain presampling results
# wave_detection_loop		to detect if and where wave lift should be placed (currently unfinished)
# get_convective_altitude	to determine the altitude at which a Cumulus cloud is placed
# manage presampling		to take proper action when a presampling call has been finished
# set_wind_model_flag		to convert the wind model string into an integer flag
# set_texture_mix		to determine the texture mix between smooth and rough cloud appearance
# create_effect_volume		to create an effect volume
# set_weather_station		to specify a weather station for interpolation
# set_atmosphere_ipoint		to specify an interpolation point for visibility, haze and shading in the atmosphere
# set_wind_ipoint		to set an aloft wind interpolation point
# set_wind_ipoint_metar		to set a wind interpolation point from available ground METAR info where aloft is modelled
# showDialog			to pop up a dialog window
# readFlags			to read configuration flags from the property tree into Nasal variables at startup
# streak_wrapper		wrapper to execute streak from menu
# convection wrapper		wrapper to execute convective clouds from menu
# barrier wrapper 		wrapper to execute barrier clouds from menu
# single_cloud_wrapper		wrapper to create single cloud from menu
# layer wrapper			wrapper to create layer from menu
# box wrapper			wrapper to create a cloudbox (experimental)
# set_aloft wrapper		wrapper to create aloft winds from menu
# set_tile			to call a weather tile creation from menu
# startup			to prepare the package at startup
# test				to serve as a testbed for new functions

# object			purpose

# weatherStation		to store info about weather conditions
# atmopshereIpoint		to store info about haze and light propagation in the atmosphere
# windIpoint			to store an interpolation point of the windfield
# effectVolume			to store effect volume info and provide methods to move and time-evolve effect volumes
# thermalLift			to store thermal info and provide methods to move and time-evolve a thermal
# waveLift 			to store wave info 




###################################
# geospatial helper functions
###################################

var calc_geo = func(clat) {

lon_to_m  = math.cos(clat*math.pi/180.0) * lat_to_m;
m_to_lon = 1.0/lon_to_m;

weather_dynamics.lon_to_m = lon_to_m;
weather_dynamics.m_to_lon = m_to_lon;

}


var calc_d_sq = func (lat1, lon1, lat2, lon2) {

var x = (lat1 - lat2) * lat_to_m;
var y = (lon1 - lon2) * lon_to_m;

return (x*x + y*y);
}


###################################
# effect volume management loop
###################################

var effect_volume_loop = func (index, n_active) {


if (local_weather_running_flag == 0) {return;}

var n = 25;


var esize = n_effectVolumeArray;

var viewpos = geo.aircraft_position();
var active_counter = n_active;

var i_max = index + n;
if (i_max > esize) {i_max = esize;}

for (var i = index; i < i_max; i = i+1)
	{
	var e = effectVolumeArray[i];
	
	var flag = 0; # default assumption is that we're not in the volume
	
	var ealt_min = e.alt_low * ft_to_m;
	var ealt_max = e.alt_high * ft_to_m;

	
	if ((viewpos.alt() > ealt_min) and (viewpos.alt() < ealt_max)) # we are in the correct alt range
		{
		# so we load geometry next
		
		var geometry = e.geometry;
		var elat = e.lat;
		var elon = e.lon;
		var rx = e.r1;

		if (geometry == 1) # we have a cylinder
			{
			var d_sq = calc_d_sq(viewpos.lat(), viewpos.lon(), elat, elon);
			if (d_sq < (rx*rx)) {flag =1;}
			}
		else if (geometry == 2) # we have an elliptic shape
			{
			# get orientation

			var ry = e.r2;
			var phi = e.phi;		

			phi = phi * math.pi/180.0;
						

			# first get unrotated coordinates 
			var xx = (viewpos.lon() - elon) * lon_to_m;
			var yy = (viewpos.lat() - elat) * lat_to_m;
			
			# then rotate to align with the shape
			var x = xx * math.cos(phi) - yy * math.sin(phi);
			var y = yy * math.cos(phi) + xx * math.sin(phi); 

			# then check elliptic condition
			if ((x*x)/(rx*rx) + (y*y)/(ry*ry) <1) {flag = 1;}
			}
		else if (geometry == 3) # we have a rectangular shape
			{
			# get orientation

			var ry = e.r2;
			var phi = e.phi;

			phi = phi * math.pi/180.0;
			# first get unrotated coordinates 
			var xx = (viewpos.lon() - elon) * lon_to_m;
			var yy = (viewpos.lat() - elat) * lat_to_m;
			# then rotate to align with the shape
			var x = xx * math.cos(phi) - yy * math.sin(phi);
			var y = yy * math.cos(phi) + xx * math.sin(phi); 
			# then check rectangle condition
			if ((x>-rx) and (x<rx) and (y>-ry) and (y<ry)) {flag = 1;}
			}
		} # end if altitude
	
	
	# if flag ==1 at this point, we are inside the effect volume
	# but we only need to take action on entering and leaving, so we check also active_flag
	
	# if (flag==1) {print("Inside volume");}
	
	var active_flag = e.active_flag;

	if ((flag==1) and (active_flag ==0)) # we just entered the node
		{
		#print("Entered volume");		
		e.active_flag = 1;	
		effect_volume_start(e);
		}
	else if ((flag==0) and (active_flag ==1)) # we left an active node
		{
		#print("Left volume!");
		e.active_flag = 0;
		effect_volume_stop(e);
		}
	if (flag==1) {active_counter = active_counter + 1;} # we still count the active volumes
	
	} # end foreach

# at this point, all active effect counters should have been set to zero if we're outside all volumes
# however there seem to be rare configurations of overlapping volumes for which this doesn't happen
# therefore we zero them for redundancy here so that the interpolation loop can take over
# and set the properties correctly for outside


if (i == esize) # we check the number of actives and reset all counters
	{
	if (active_counter == 0)
		{
		var vNode = props.globals.getNode("local-weather/effect-volumes", 1);
		vNode.getChild("number-active-vis").setValue(0);
		vNode.getChild("number-active-snow").setValue(0);
		vNode.getChild("number-active-rain").setValue(0);
		vNode.getChild("number-active-lift").setValue(0);
		vNode.getChild("number-active-turb").setValue(0);
		vNode.getChild("number-active-sat").setValue(0);
		}
	#print("n_active: ", active_counter);
	active_counter = 0; i = 0;
	}

# and we repeat the loop as long as the control flag is set


if (getprop(lw~"effect-loop-flag") ==1) {settimer( func {effect_volume_loop(i, active_counter); },0);}
}


###################################
# assemble effect volume array
###################################


var assemble_effect_array = func {

n_effectVolumeArray = size(effectVolumeArray);
}



###################################
# vector addition
###################################

var add_vectors = func (phi1, r1, phi2, r2) {

phi1 = phi1 * math.pi/180.0;
phi2 = phi2 * math.pi/180.0;

var x1 = r1 * math.sin(phi1);
var x2 = r2 * math.sin(phi2);

var y1 = r1 * math.cos(phi1);
var y2 = r2 * math.cos(phi2);

var x = x1+x2;
var y = y1+y2;

var phi = math.atan2(x,y) * 180.0/math.pi;
var r = math.sqrt(x*x + y*y);

var vec = [];

append(vec, phi);
append(vec,r);

return vec;
}


###################################
# windfield altitude interpolation
###################################


var wind_altitude_interpolation = func (altitude, w) {

if (altitude < wind_altitude_array[0]) {var alt_wind = wind_altitude_array[0];}
else if (altitude > wind_altitude_array[8]) {var alt_wind = 0.99* wind_altitude_array[8];}
else {var alt_wind = altitude;}

for (var i = 0; i<9; i=i+1)
	{if (alt_wind < wind_altitude_array[i]) {break;}}
	

#var altNodeMin = w.getChild("altitude",i-1);
#var altNodeMax = w.getChild("altitude",i);	

#var vmin = altNodeMin.getNode("windspeed-kt").getValue();
#var vmax = altNodeMax.getNode("windspeed-kt").getValue();

var vmin = w.alt[i-1].v;
var vmax = w.alt[i].v;

#var dir_min = altNodeMin.getNode("wind-from-heading-deg").getValue();
#var dir_max = altNodeMax.getNode("wind-from-heading-deg").getValue();

var dir_min = w.alt[i-1].d;
var dir_max = w.alt[i].d;

var f = (alt_wind - wind_altitude_array[i-1])/(wind_altitude_array[i] - wind_altitude_array[i-1]);

var res = add_vectors(dir_min, (1-f) * vmin, dir_max, f * vmax);

return res;
}


###################################
# windfield spatial interpolation
###################################

var wind_interpolation = func (lat, lon, alt) {

var sum_norm = 0;
var sum_wind = [0,0];

var wsize = size(windIpointArray);
	
for (var i = 0; i < wsize; i=i+1) {
	
	
	var w = windIpointArray[i];

	var wpos = geo.Coord.new();
	wpos.set_latlon(w.lat,w.lon,1000.0);

	var ppos = geo.Coord.new();
	ppos.set_latlon(lat,lon,1000.0);

	var d = ppos.distance_to(wpos);
	if (d <100.0) {d = 100.0;} # to prevent singularity at zero

	sum_norm = sum_norm + (1./d) * w.weight;

	var res = wind_altitude_interpolation(alt,w);
	
	sum_wind = add_vectors(sum_wind[0], sum_wind[1], res[0], (res[1]/d) * w.weight);	

	# gradually fade in the interpolation weight of newly added points to
	# avoid sudden jumps

	if (w.weight < 1.0) {w.weight = w.weight + 0.002;}
	}

sum_wind[1] = sum_wind[1] /sum_norm;

return sum_wind;
}


###################################
# boundary layer computations
###################################


var get_slowdown_fraction = func {

var tile_index = getprop(lw~"tiles/tile[4]/tile-index");
var altitude_agl = getprop("/position/altitude-agl-ft");
var altitude = getprop("/position/altitude-ft");



if (presampling_flag == 0)
	{
	var base_layer_thickness = 600.0;	
	var f_slow = 1.0/3.0;
	}
else 
	{
	var alt_median = alt_50_array[tile_index - 1];
	var alt_difference = alt_median - (altitude - altitude_agl);
	var base_layer_thickness = 150.0;	

	# get the boundary layer size dependent on terrain altitude above terrain median

	if (alt_difference > 0.0) # we're low and the boundary layer grows
		{var boundary_alt = base_layer_thickness + 0.3 * alt_difference;}
	else # the boundary layer shrinks
		{var boundary_alt = base_layer_thickness + 0.1 * alt_difference;}

	if (boundary_alt < 50.0){boundary_alt = 50.0;}
	if (boundary_alt > 3000.0) {boundary_alt = 3000.0;}

	# get the boundary effect as a function of bounday layer size
	
	var f_slow = 1.0 - (0.2 + 0.17 * math.ln(boundary_alt/base_layer_thickness));
	}

if (debug_output_flag == 1)
	{
	#print("Boundary layer thickness: ",base_layer_thickness);
	#print("Boundary layer slowdown: ", f_slow);
	}
return f_slow;
}


###################################
# interpolation management loop
###################################

var interpolation_loop = func {

if (local_weather_running_flag == 0) {return;}

var viewpos = geo.aircraft_position();



#var vis_before = getprop(lwi~"visibility-m");
var vis_before = interpolated_conditions.visibility_m;

# if applicable, do some work for fps sampling

if (fps_control_flag == 1)
	{
	fps_samples = fps_samples +1;
	fps_sum = fps_sum + getprop("/sim/frame-rate");
	}


# determine at which distance we no longer keep an interpolation point, needs to be larger for METAR since points are more scarce

if (metar_flag == 1)
	{var distance_to_unload = 250000.0;}
else 	
	{var distance_to_unload = 120000.0;}	

# if we can set environment without a reset, the loop can run a bit faster for smoother interpolation
# so determine the suitable timing


var interpolation_loop_time = 0.1; 
var vlimit = 1.01;


# get an inverse distance weighted average from all defined weather stations

var sum_alt = 0.0;
var sum_vis = 0.0;
var sum_T = 0.0;
var sum_p = 0.0;
var sum_D = 0.0;
var sum_norm = 0.0;

var n_stations = size(weatherStationArray);

for (var i = 0; i < n_stations; i=i+1) {
	
	var s = weatherStationArray[i];
	

	var stpos = geo.Coord.new();
	stpos.set_latlon(s.lat,s.lon,0.0);

	var d = viewpos.distance_to(stpos);
	if (d <100.0) {d = 100.0;} # to prevent singularity at zero

	sum_norm = sum_norm + 1./d * s.weight;
	
	sum_alt = sum_alt + (s.alt/d) * s.weight;
	sum_vis = sum_vis + (s.vis/d) * s.weight;
	sum_T = sum_T + (s.T/d) * s.weight;
	sum_D = sum_D + (s.D/d) * s.weight;
	sum_p = sum_p + (s.p/d) * s.weight;

	# gradually fade in the interpolation weight of newly added stations to
	# avoid sudden jumps

	if (s.weight < 1.0) {s.weight = s.weight + 0.02;}

	# automatically delete stations out of range
	# take care not to unload if weird values appear for a moment
	# never unload if only one station left
	if ((d > distance_to_unload) and (d < (distance_to_unload + 20000.0)) and (n_stations > 1)) 
		{
		if (debug_output_flag == 1) 
			{print("Distance to weather station ", d, " m, unloading ...", i);}
		weatherStationArray = weather_tile_management.delete_from_vector(weatherStationArray,i);
		i = i-1; n_stations = n_stations -1;
		}
	}

setprop(lwi~"station-number", i+1);


var ialt = sum_alt/sum_norm;
var vis = sum_vis/sum_norm;
var p = sum_p/sum_norm;
var D = sum_D/sum_norm + temperature_offset;
var T = sum_T/sum_norm + temperature_offset;



# get an inverse distance weighted average from all defined atmospheric condition points

sum_norm = 0.0;
var sum_vis_aloft = 0.0;
var sum_vis_alt1 = 0.0;
var sum_vis_ovcst = 0.0;
var sum_ovcst = 0.0;
var sum_ovcst_alt_low = 0.0;
var sum_ovcst_alt_high = 0.0;
var sum_scatt = 0.0;
var sum_scatt_alt_low = 0.0;
var sum_scatt_alt_high = 0.0;

var n_iPoints = size(atmosphereIpointArray);

for (var i = 0; i < n_iPoints; i=i+1) {
	
	var a = atmosphereIpointArray[i];
	

	var apos = geo.Coord.new();
	apos.set_latlon(a.lat,a.lon,0.0);

	var d = viewpos.distance_to(apos);
	if (d <100.0) {d = 100.0;} # to prevent singularity at zero

	sum_norm = sum_norm + 1./d * a.weight;
	sum_vis_aloft = sum_vis_aloft + (a.vis_aloft/d) * a.weight;
	sum_vis_alt1 = sum_vis_alt1 + (a.vis_alt1/d) * a.weight;
	sum_vis_ovcst = sum_vis_ovcst + (a.vis_ovcst/d) * a.weight;	
	sum_ovcst = sum_ovcst + (a.ovcst/d) * a.weight;
	sum_ovcst_alt_low = sum_ovcst_alt_low + (a.ovcst_alt_low/d) * a.weight;
	sum_ovcst_alt_high = sum_ovcst_alt_high + (a.ovcst_alt_high/d) * a.weight;
	sum_scatt = sum_scatt + (a.scatt/d) * a.weight;
	sum_scatt_alt_low = sum_scatt_alt_low + (a.scatt_alt_low/d) * a.weight;
	sum_scatt_alt_high = sum_scatt_alt_high + (a.scatt_alt_high/d) * a.weight;

	# gradually fade in the interpolation weight of newly added stations to
	# avoid sudden jumps

	if (a.weight < 1.0) {a.weight = a.weight + 0.02;}

	# automatically delete stations out of range
	# take care not to unload if weird values appear for a moment
	# never unload if only one station left
	if ((d > distance_to_unload) and (d < (distance_to_unload + 20000.0)) and (n_iPoints > 1)) 
		{
		if (debug_output_flag == 1) 
			{print("Distance to atmosphere interpolation point ", d, " m, unloading ...", i);}
		atmosphereIpointArray = weather_tile_management.delete_from_vector(atmosphereIpointArray,i);
		i = i-1; n_iPoints = n_iPoints -1;
		}
	}

setprop(lwi~"atmosphere-ipoint-number", i+1);



var vis_aloft = sum_vis_aloft/sum_norm;
var vis_alt1 = sum_vis_alt1/sum_norm;
var vis_ovcst = sum_vis_ovcst/sum_norm;
var ovcst_max = sum_ovcst/sum_norm;
var ovcst_alt_low = sum_ovcst_alt_low/sum_norm;
var ovcst_alt_high = sum_ovcst_alt_high/sum_norm;
var scatt_max = sum_scatt/sum_norm;
var scatt_alt_low = sum_scatt_alt_low/sum_norm;
var scatt_alt_high = sum_scatt_alt_high/sum_norm;




# altitude model for visibility - increase above the lowest inversion layer to simulate ground haze

vis = vis * ground_haze_factor;

var altitude = getprop("position/altitude-ft");
# var current_mean_terrain_elevation = ialt;

var alt1 = vis_alt1;
var alt2 = alt1 + 1500.0;


setprop("/environment/ground-visibility-m",vis);
setprop("/environment/ground-haze-thickness-m",alt2 * ft_to_m);

# compute the visibility gradients

if (realistic_visibility_flag == 1)
	{
	vis_aloft = vis_aloft * 2.0;
	vis_ovcst = vis_ovcst * 3.0;
	}

var inc1 = 0.0 * (vis_aloft - vis)/(vis_alt1 - ialt);
var inc2 = 0.9 * (vis_aloft - vis)/1500.0;
var inc3 = (vis_ovcst - vis_aloft)/(ovcst_alt_high - vis_alt1+1500);
var inc4 = 0.5;


if (realistic_visibility_flag == 1)
	{inc4 = inc4 * 3.0;}

# compute the visibility

if (altitude < alt1)
	{vis = vis + inc1 * altitude;}
else if (altitude < alt2)
	{
	vis = vis + inc1 * alt1 + inc2 * (altitude - alt1); 
	}
else if	(altitude < ovcst_alt_high)
	{
	vis = vis + inc1 * alt1 + inc2 * (alt2-alt1)  + inc3 * (altitude - alt2);
	}
else if (altitude > ovcst_alt_high)
	{
	vis = vis + inc1 * alt1 + inc2 * (alt2-alt1)  + inc3 * (ovcst_alt_high - alt2) + inc4 * (altitude - ovcst_alt_high);
	}

# limit visibility (otherwise memory consumption may be very bad...)

if (vis > max_vis_range)
	{vis = max_vis_range;}

	
# determine scattering shader parameters if scattering shader is on

if (scattering_shader_flag == 1) 
	{
	
        # values to be used with new exposure filter
	var rayleigh = 0.0003;
	var mie = 0.005;
	var density = 0.3;

	var vis_factor = (vis - 30000.0)/90000.0;
	if (vis_factor < 0.0) {vis_factor = 0.0;}
	if (vis_factor > 1.0) {vis_factor = 1.0;}
 

	if (altitude < 36000.0) 
		{
		rayleigh = 0.0003 - 0.0001 * vis_factor;
		mie = 0.005 - vis_factor * 0.002; 
		}
	else if (altitude < 85000.0)
		{
		rayleigh = (0.0003 - 0.0001 * vis_factor)  - (altitude-36000.0)/49000.0 * 0.0001;
		mie = 0.005 - vis_factor * 0.002 - (altitude-36000.0)/49000.0 * 0.002;
		}
	else 
		{rayleigh = 0.0002 - 0.0001 * vis_factor; mie = 0.003 - vis_factor * 0.002;}

       # now the pollution factor
   
	if (altitude < alt1)
		{
		rayleigh = rayleigh +0.0003 * air_pollution_norm + 0.0004 * air_pollution_norm * (1.0 - (altitude/alt1) * (altitude/alt1));
		density = density + 0.05 * air_pollution_norm + 0.05 * air_pollution_norm * (1.0 - (altitude/alt1) * (altitude/alt1));
		}
	else
		{
		rayleigh = rayleigh + 0.0003 * air_pollution_norm;
		density = density + 0.05 * air_pollution_norm;
		}


	}


# compute the horizon shading

if (altitude < scatt_alt_low)
	{
	var scatt = scatt_max;
	}
else if (altitude < scatt_alt_high)
	{
	var scatt = scatt_max + (0.95 - scatt_max) * (altitude - scatt_alt_low)/(scatt_alt_high-scatt_alt_low);
	}
else
	{var scatt = 0.95;}


# compute  the cloud layer self shading correction

var sun_angle = 1.57079632675 - getprop("/sim/time/sun-angle-rad");
var cloud_layer_shading = 1.0 - (0.8*(1.0 - scatt_max) *  math.pow(math.cos(sun_angle),100.0));

# compute the overcast haze

if (altitude < ovcst_alt_low)
	{
	var ovcst = ovcst_max;
	}	
else if (altitude < ovcst_alt_high)
	{
	var ovcst = ovcst_max - ovcst_max * (altitude - ovcst_alt_low)/(ovcst_alt_high-ovcst_alt_low);
	}
else
	{var ovcst = 0.0;}


# compute heating and cooling of various terrain and object types

var time = getprop("sim/time/utc/day-seconds");
time = time + getprop("sim/time/local-offset");

# low thermal inertia follows the Sun more or less directly
# high thermal inertia takes some time to reach full heat

var t_factor1 = 0.5 * (1.0-math.cos((time * sec_to_rad))); 
var t_factor2 = 0.5 * (1.0-math.cos((time * sec_to_rad)-0.4));
var t_factor3 = 0.5 * (1.0-math.cos((time * sec_to_rad)-0.9)); 

var amp = scatt_max;

setprop("/environment/surface/delta-T-soil", amp * (-5.0 + 10.0 * t_factor2));
setprop("/environment/surface/delta-T-vegetation", amp * (-5.0 + 10.0 * t_factor1));
setprop("/environment/surface/delta-T-rock", amp * (-7.0 + 14.0 * t_factor1));
setprop("/environment/surface/delta-T-water", amp * (-1.0 + 2.0* t_factor3));
setprop("/environment/surface/delta-T-structure", amp *  10.0* t_factor1);
setprop("/environment/surface/delta-T-cloud", amp * (-2.0 + 2.0* t_factor3));

# compute base turbulence

var base_turbulence = 0.0;

if (altitude < alt1)
	{
	base_turbulence = lowest_layer_turbulence;
	}



# limit relative changes of the visibility, will make for gradual transitions

if (vis/vis_before > vlimit)
	{vis = vlimit * vis_before;}
else if (vis/vis_before < (2.0-vlimit))
	{vis = (2.0-vlimit) * vis_before;}




# write all properties into the weather interpolation record 

setprop(lwi~"mean-terrain-altitude-ft",ialt);


if (vis > 0.0) interpolated_conditions.visibility_m = vis;
interpolated_conditions.temperature_degc = T;
interpolated_conditions.dewpoint_degc = D;
if (p>10.0) interpolated_conditions.pressure_sea_level_inhg = p;



if (scattering_shader_flag == 1)
	{
	local_weather.setSkydomeShader(rayleigh, mie, density);
	setprop("/environment/cloud-self-shading", cloud_layer_shading);
	}

local_weather.setScattering(scatt);
local_weather.setOvercast(ovcst);


	

# now check if an effect volume writes the property and set only if not
# but set visibility if interpolated is smaller than effect-specified

var flag = getprop("local-weather/effect-volumes/number-active-vis");

if ((flag ==0) and (vis > 0.0) and (getprop(lw~"lift-loop-flag") == 0) and (compat_layer.smooth_visibility_loop_flag == 0))
	{
	compat_layer.setVisibility(vis);
	}
else if ((getprop("/local-weather/current/visibility-m") > vis) and (compat_layer.smooth_visibility_loop_flag == 0))
	{
	compat_layer.setVisibility(vis);
	}





flag = getprop("local-weather/effect-volumes/number-active-lift");

if (flag ==0) 
	{
	#setprop(lw~"current/thermal-lift",0.0);
	}

# no need to check for these, as they are not modelled in effect volumes

compat_layer.setTemperature(T);
compat_layer.setDewpoint(D);
if (p>0.0) {compat_layer.setPressure(p);}


# determine whether low haze is icy and whether we see scattering 

var ice_hex_sheet = 0.0;
var ice_hex_column = 0.0;

if (T < -5.0)
	{
	ice_hex_column = (-T - 5.0) /10.0;
	ice_hex_sheet = (-T - 10.0 + (T-D)) /20.0;


	var sheet_bias = (T-D)/ 20;
	if (sheet_bias > 1.0) {sheet_bias = 1.0;}
	ice_hex_column = ice_hex_column * sheet_bias;
	
	if (ice_hex_sheet > 1.0) {ice_hex_sheet = 1.0;}
	if (ice_hex_column > 1.0) {ice_hex_column = 1.0;}
	}
	#print("Col: ",ice_hex_column);
	#print("Sheet: ", ice_hex_sheet);

setprop("/environment/scattering-phenomena/ice-hexagonal-column-factor", ice_hex_column);
setprop("/environment/scattering-phenomena/ice-hexagonal-sheet-factor", ice_hex_sheet);

# now determine the local wind 


var tile_index = getprop(lw~"tiles/tile[4]/tile-index");

if (wind_model_flag ==1) # constant
	{
	var winddir = weather_dynamics.tile_wind_direction[0];
	var windspeed = weather_dynamics.tile_wind_speed[0];

	wind.cloudlayer = [winddir,windspeed];

	}
else if (wind_model_flag ==2) # constant in tile
	{
	var winddir = weather_dynamics.tile_wind_direction[tile_index-1];
	var windspeed = weather_dynamics.tile_wind_speed[tile_index-1];

	wind.cloudlayer = [winddir, windspeed];

	}	
else if (wind_model_flag ==3) # aloft interpolated, constant in tiles
	{
	var w = windIpointArray[0];
	var res = wind_altitude_interpolation(altitude,w);
	var winddir = res[0];
	var windspeed = res[1];

	wind.cloudlayer = wind_altitude_interpolation(0.0,w);

	}
else if (wind_model_flag == 5) # aloft waypoint interpolated
	{
	var res = wind_interpolation(viewpos.lat(), viewpos.lon(), altitude);	

	var winddir = res[0];
	var windspeed = res[1];

	wind.cloudlayer = wind_interpolation(viewpos.lat(), viewpos.lon(), 0.0);	
	}


wind.surface = [wind.cloudlayer[0], wind.cloudlayer[1] * get_slowdown_fraction()];

# now do the boundary layer computations

var altitude_agl = getprop("/position/altitude-agl-ft");

if (altitude_agl < 50.0)
	{
	base_turbulence = base_turbulence * altitude_agl/50.0;
	}


if (presampling_flag == 0)
	{
	var boundary_alt = 600.0;
	var windspeed_ground = windspeed/3.0;
	
	var f_min = 2.0/3.0;

	if (altitude_agl < boundary_alt)
		{var windspeed_current = windspeed_ground + 2.0 * windspeed_ground * (altitude_agl/boundary_alt);}
	else 
		{var windspeed_current = windspeed;}
	}
else 
	{
	var alt_median = alt_50_array[tile_index - 1];
	var alt_difference = alt_median - (altitude - altitude_agl);
	var base_layer_thickness = 150.0;	

	# get the boundary layer size dependent on terrain altitude above terrain median

	if (alt_difference > 0.0) # we're low and the boundary layer grows
		{var boundary_alt = base_layer_thickness + 0.3 * alt_difference;}
	else # the boundary layer shrinks
		{var boundary_alt = base_layer_thickness + 0.1 * alt_difference;}

	if (boundary_alt < 50.0){boundary_alt = 50.0;}
	if (boundary_alt > 3000.0) {boundary_alt = 3000.0;}

	# get the boundary effect as a function of bounday layer size
	
	var f_min = 0.2 + 0.17 * math.ln(boundary_alt/base_layer_thickness);


	if (altitude_agl < boundary_alt)
		{
		var windspeed_current = (1-f_min) * windspeed + f_min * windspeed * (altitude_agl/boundary_alt);
		}
	else 
		{var windspeed_current = windspeed;}

	}


var windspeed_ground = (1.0-f_min) * windspeed;


# set the wind hash before gusts, it represents mean wind

wind.current = [winddir,windspeed_current];



# determine gusts and turbulence in the bounday layer

var gust_frequency = getprop(lw~"tmp/gust-frequency-hz");




if (gust_frequency > 0.0)
	{
	var gust_relative_strength = getprop(lw~"tmp/gust-relative-strength");
	var gust_angvar = getprop(lw~"tmp/gust-angular-variation-deg");
	
	# if we have variability in the direction of the wind, the winds will
	# drift by the Markov chain code below to adjust to a new winddir as computed
	# above - however if the wind is not variable but still gusty, this won't happen
	# so we have to take care of it explicitly

	if (gust_angvar > 0.0)
		{var winddir_last = interpolated_conditions.wind_from_heading_deg;}
	else	
		{var winddir_last = winddir;}
	
	var alt_scaling_factor = 1.2 * windspeed / 10.0;
	if (alt_scaling_factor < 1.0) {alt_scaling_factor = 1.0;}

	# expected mean number of gusts in time interval (should be < 1)
	var p_gust =  gust_frequency * interpolation_loop_time;
	
	# real time series show a ~10-30 second modulation as well
	var p_squall =  gust_frequency * 0.1 * interpolation_loop_time;
	var squall_scale = getprop("/local-weather/tmp/squall-scaling-norm");

	if (rand() < p_squall)
		{
		squall_scale = rand();
		# prefer large changes
		if ((squall_scale > 0.3) and (squall_scale < 0.7))
			{squall_scale = rand();}

		setprop("/local-weather/tmp/squall-scaling-norm", squall_scale);
		}

	winddir_change = 0.0;

	if (rand() < p_gust) # we change the offsets for windspeed and direction
		{
		var alt_fact = 1.0 - altitude_agl/(boundary_alt * alt_scaling_factor);
		if (alt_fact < 0.0) {alt_fact = 0.0};
		
		var random_factor = 0.3 * rand()  + 0.7 * squall_scale;

		windspeed_multiplier =  (1.0 + (random_factor * gust_relative_strength * alt_fact));
		winddir_change = alt_fact * (1.0 - 2.0 * rand()) * gust_angvar;
		winddir_change = winddir_change * 0.2; # Markov chain parameter, max. change per frame is 1/5 
		
		# if the Markov chain reaches the boundary, reflect

		#print("Winddir: ", winddir, " winddir_last: ", winddir_last, " winddir_change: ", winddir_change);
		if (weather_tile_management.relangle(winddir_last + winddir_change, winddir) > gust_angvar)
			{winddir_change = -winddir_change;}
		
		}
	windspeed_current = windspeed_current *  windspeed_multiplier;
	winddir = winddir_last + winddir_change;
	}





compat_layer.setWindSmoothly(winddir, windspeed_current);

# set the interpolated conditions to the wind including gust 

interpolated_conditions.wind_from_heading_deg = winddir;
interpolated_conditions.windspeed_kt = windspeed_current;

# hack to get access to the water shader

setprop("/environment/config/boundary/entry[0]/wind-from-heading-deg",winddir);
setprop("/environment/config/boundary/entry[0]/wind-speed-kt",windspeed_ground);

# end hack




# set turbulence
flag = getprop("local-weather/effect-volumes/number-active-turb");

var wind_enhancement_factor = windspeed_current/15.0;
if (wind_enhancement_factor > 1.5) {wind_enhancement_factor = 1.5;}

var volcanic_turbulence = getprop("/environment/volcanoes/turbulence");

var total_turbulence = base_turbulence * wind_enhancement_factor + volcanic_turbulence;
if (total_turbulence > 1.0) {total_turbulence = 1.0;}

if ((flag ==0))
	{compat_layer.setTurbulence(total_turbulence);}

# set scattering on the ground - this doesn't affect fog but is diffuse and specular light reduction
# so it is stronger than normal scattering

var scatt_ground = (scatt_max - 0.4)/0.6;
if (scatt_ground < 0.0) {scatt_ground = 0.0;}

setprop("/environment/surface/scattering", scatt_ground);

if (getprop(lw~"interpolation-loop-flag") ==1) {settimer(interpolation_loop, 0.0);}

}

###################################
# thermal lift loop startup
###################################

var thermal_lift_start = func (ev) {


# if another lift loop is already running, do nothing
if (getprop(lw~"lift-loop-flag") == 1) {return;} 

# copy the properties from effect volume to the lift object

l = thermalLift.new(ev.lat, ev.lon, ev.radius, ev.height, ev.cn, ev.sh, ev.max_lift, ev.f_lift_radius);

l.index = ev.index;

if (dynamics_flag == 1)
	{
	l.timestamp = weather_dynamics.time_lw;
	if (dynamical_convection_flag == 1)
		{
		l.flt = ev.flt;
		l.evolution_timestamp = ev.evolution_timestamp;
		}
	}



thermal = l;

if (debug_output_flag == 1)
	{
	print("Entering thermal lift...");
	print("strength: ", thermal.max_lift, " radius: ", thermal.radius);
	if (dynamical_convection_flag ==1)
		{print("fractional lifetime: ", thermal.flt);}

	}

# and start the lift loop, unless another one is already running
# so we block overlapping calls


setprop(lw~"lift-loop-flag",1); 
settimer(thermal_lift_loop,0);

}

###################################
# thermal lift loop
###################################

var thermal_lift_loop = func {

if (local_weather_running_flag == 0) {return;}

var apos = geo.aircraft_position();

var tlat = thermal.lat;
var tlon = thermal.lon;

var tpos = geo.Coord.new();
tpos.set_latlon(tlat,tlon,0.0);

var d = apos.distance_to(tpos);
var alt = getprop("position/altitude-ft");

if (dynamical_convection_flag == 1)
	{var flt = thermal.flt;}
else
	{var flt = 0.5;}

var lift = calcLift(d, alt, thermal.radius, thermal.height, thermal.cn, thermal.sh, thermal.max_lift, thermal.f_lift_radius, flt);

if (getprop(lw~"wave-loop-flag") ==1) 
	{
	lift = lift + getprop(lw~"current/wave-lift");
	}

# compute a reduction in visibility when entering the cloudbase

#var vis = getprop(lw~"interpolation/visibility-m");

var vis = interpolated_conditions.visibility_m;

if (alt > 0.9 * thermal.height)
	{
	var visibility_reduction = math.pow((alt - 0.9 * thermal.height)/(0.2 * thermal.height),0.1);
	visibility_reduction = visibility_reduction * (1.0 - math.pow(d/(0.8*thermal.radius),14));

	if (visibility_reduction > 1.0) {visibility_reduction = 1.0;} # this shouldn't ever happen
	if (visibility_reduction < 0.0) {visibility_reduction = 0.0;} 
	vis = vis * (1.0 - 0.98 * visibility_reduction);

	}

setprop(lw~"current/visibility-m",vis);
compat_layer.setVisibility(vis);




setprop(lw~"current/thermal-lift",lift);
compat_layer.setLift(lift);

# if dynamics is on, move the thermal and occasionally compute altitude and age

if (dynamics_flag == 1)
	{
	thermal.move();
	
	if ((rand() < 0.01) and (presampling_flag == 1)) # check every 100 frames
		{
		if (dynamical_convection_flag == 1) 
			{
			thermal.correct_altitude_and_age();
			if (thermal.flt > 1.1)
				{thermal_lift_stop();}
			}
		else	
			{	
			thermal.correct_altitude();
			}
		}	
	}


if (getprop(lw~"lift-loop-flag") ==1) {settimer(thermal_lift_loop, 0);}
}





###################################
# thermal lift loop stop
###################################

var thermal_lift_stop = func {

setprop(lw~"lift-loop-flag",0);
setprop(lw~"current/thermal-lift",0.0);
compat_layer.setLift(0.0);

if (debug_output_flag == 1)
	{
	print("Leaving thermal lift...");
	}

}


###################################
# wave lift loop startup
###################################

var wave_lift_start = func (ev) {

# copy the properties from effect volume to the wave object


w = waveLift.new (ev.lat, ev.lon, ev.r1, ev.r2, ev.phi, ev.height, ev.max_lift);
w.index = ev.index;
wave = w;

# and start the lift loop, unless another one is already running
# so we block overlapping calls

if (getprop(lw~"wave-loop-flag") == 0) 
{setprop(lw~"wave-loop-flag",1); settimer(wave_lift_loop,0);}

}

###################################
# wave lift loop
###################################

var wave_lift_loop = func {

if (local_weather_running_flag == 0) {return;}

var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
var alt = getprop("position/altitude-ft");


var phi = wave.phi * math.pi/180.0;

var xx = (lon - wave.lon) * lon_to_m;
var yy = (lat - wave.lat) * lat_to_m;

var x = xx * math.cos(phi) - yy * math.sin(phi);
var y = yy * math.cos(phi) + xx * math.sin(phi); 

var lift = calcWaveLift(x,y,alt);

# check if we are in a thermal, if so set wave lift and let the thermal lift loop add that

if (getprop(lw~"lift-loop-flag") ==1)
	{
	setprop(lw~"current/wave-lift",lift);
	}
else
	{
	setprop(lw~"current/thermal-lift",lift);
	}

if (getprop(lw~"wave-loop-flag") ==1) {settimer(wave_lift_loop, 0);}
}




###################################
# wave lift loop stop
###################################

var wave_lift_stop = func {

setprop(lw~"wave-loop-flag",0);
setprop(lw~"current/thermal-lift",0.0);
}



####################################
# action taken when in effect volume
####################################

var effect_volume_start = func (ev) {

var cNode = props.globals.getNode(lw~"current");


if (ev.vis_flag ==1)
	{
	# first store the current setting in case we need to restore on leaving 
	
	var vis = ev.vis;
	ev.vis_r = cNode.getNode("visibility-m").getValue();

	# then set the new value in current and execute change
	cNode.getNode("visibility-m").setValue(vis);
	#compat_layer.setVisibility(vis);
	#print(vis);
	compat_layer.setVisibilitySmoothly(vis);

	# then count the number of active volumes on entry (we need that to determine
	# what to do on exit)
	ev.n_entry_vis = getprop(lw~"effect-volumes/number-active-vis");

	# and add to the counter
	setprop(lw~"effect-volumes/number-active-vis",getprop(lw~"effect-volumes/number-active-vis")+1);
	}

if (ev.rain_flag == 1)
	{
	var rain = ev.rain;
	#print("Setting rain to:", rain);
	ev.rain_r = cNode.getNode("rain-norm").getValue();
	cNode.getNode("rain-norm").setValue(rain);
	compat_layer.setRain(rain);
	ev.n_entry_rain = getprop(lw~"effect-volumes/number-active-rain");
	setprop(lw~"effect-volumes/number-active-rain",getprop(lw~"effect-volumes/number-active-rain")+1);
	}
if (ev.snow_flag == 1)
	{
	var snow = ev.snow;
	ev.snow_r = cNode.getNode("snow-norm").getValue();
	cNode.getNode("snow-norm").setValue(snow);
	compat_layer.setSnow(snow);
	ev.n_entry_snow = getprop(lw~"effect-volumes/number-active-snow");
	setprop(lw~"effect-volumes/number-active-snow",getprop(lw~"effect-volumes/number-active-snow")+1);
	}
if (ev.turb_flag == 1)
	{
	var turbulence = ev.turb;
	ev.turb_r = cNode.getNode("turbulence").getValue();
	cNode.getNode("turbulence").setValue(turbulence);
	compat_layer.setTurbulence(turbulence);
	ev.n_entry_turb = getprop(lw~"effect-volumes/number-active-turb");
	setprop(lw~"effect-volumes/number-active-turb",getprop(lw~"effect-volumes/number-active-turb")+1);
	}
if (ev.sat_flag == 1)
	{
	var saturation = ev.sat;
	ev.sat_r = getprop("/rendering/scene/saturation");
	compat_layer.setLightSmoothly(saturation);
	ev.n_entry_sat = getprop(lw~"effect-volumes/number-active-sat");
	setprop(lw~"effect-volumes/number-active-sat",getprop(lw~"effect-volumes/number-active-sat")+1);
	}

if (ev.lift_flag == 1)
	{
	var lift = ev.lift;
	ev.lift_r = cNode.getNode("thermal-lift").getValue();
	cNode.getNode("thermal-lift").setValue(lift);
	compat_layer.setLift(lift);
	ev.n_entry_lift = getprop(lw~"effect-volumes/number-active-lift");	
	setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")+1);
	}
else if (ev.lift_flag == 2)
	{
	ev.lift_r = cNode.getNode("thermal-lift").getValue();
	ev.n_entry_lift = getprop(lw~"effect-volumes/number-active-lift");	
	setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")+1);
	thermal_lift_start(ev);
	}
else if (ev.lift_flag == 3)
	{
	ev.lift_r = cNode.getNode("thermal-lift").getValue();
	ev.n_entry_lift = getprop(lw~"effect-volumes/number-active-lift");	
	setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")+1);
	wave_lift_start(ev);
	}

}



var effect_volume_stop = func (ev) {

var cNode = props.globals.getNode(lw~"current");


if (ev.vis_flag == 1)
	{

	var n_active = getprop(lw~"effect-volumes/number-active-vis");

	
	var n_entry = ev.n_entry_vis;	

	# if no other nodes affecting property are active, restore to outside
	# else restore settings as they have been when entering the volume when the number
	# of active volumes is the same as on entry (i.e. volumes are nested), otherwise
	# leave property at current because new definitions are already active and should not
	# be cancelled
	
	if (n_active ==1){var vis = interpolated_conditions.visibility_m;}
	else if ((n_active -1) == n_entry) 
		{var vis = ev.vis_r;}
	else {var vis = cNode.getNode("visibility-m").getValue();}
	cNode.getNode("visibility-m").setValue(vis);
	compat_layer.setVisibilitySmoothly(vis);
	
	# and subtract from the counter
	setprop(lw~"effect-volumes/number-active-vis",getprop(lw~"effect-volumes/number-active-vis")-1);
	}
if (ev.rain_flag == 1)
	{
	var n_active = getprop(lw~"effect-volumes/number-active-rain");
	var n_entry = ev.n_entry_rain;

	if (n_active ==1){var rain = interpolated_conditions.rain_norm;}
	else if ((n_active -1) == n_entry)
		 {var rain = ev.rain_r;}
	else {var rain = cNode.getNode("rain-norm").getValue();}
	cNode.getNode("rain-norm").setValue(rain);
	compat_layer.setRain(rain);
	setprop(lw~"effect-volumes/number-active-rain",getprop(lw~"effect-volumes/number-active-rain")-1);
	}

if (ev.snow_flag == 1)
	{
	var n_active = getprop(lw~"effect-volumes/number-active-snow");
	var n_entry = ev.n_entry_snow;	

	if (n_active ==1){var snow = interpolated_conditions.snow_norm;}
	else if ((n_active -1) == n_entry)
		{var snow = ev.snow_r;}
	else {var snow = cNode.getNode("snow-norm").getValue();}
	cNode.getNode("snow-norm").setValue(snow);
	compat_layer.setSnow(snow);
	setprop(lw~"effect-volumes/number-active-snow",getprop(lw~"effect-volumes/number-active-snow")-1);
	}

if (ev.turb_flag == 1)
	{
	var n_active = getprop(lw~"effect-volumes/number-active-turb");
	var n_entry = ev.n_entry_turb;
	if (n_active ==1){var turbulence = interpolated_conditions.turbulence;}
	else if ((n_active -1) == n_entry) 
		 {var turbulence = ev.turb_r;}
	else {var turbulence = cNode.getNode("turbulence").getValue();}
	cNode.getNode("turbulence").setValue(turbulence);
	compat_layer.setTurbulence(turbulence);
	setprop(lw~"effect-volumes/number-active-turb",getprop(lw~"effect-volumes/number-active-turb")-1);
	}

if (ev.sat_flag == 1)
	{
	var n_active = getprop(lw~"effect-volumes/number-active-sat");
	var n_entry = ev.n_entry_sat;
	if (n_active ==1){var saturation = 1.0;}
	else if ((n_active -1) == n_entry) 
		 {var saturation = ev.sat_r;}
	else {var saturation = getprop("/rendering/scene/saturation");}
	compat_layer.setLightSmoothly(saturation);
	setprop(lw~"effect-volumes/number-active-sat",getprop(lw~"effect-volumes/number-active-sat")-1);
	}

if (ev.lift_flag == 1)
	{
	var n_active = getprop(lw~"effect-volumes/number-active-lift");
	var n_entry = ev.n_entry_lift;
	if (n_active ==1){var lift = interpolated_conditions.thermal_lift;}
	else if ((n_active -1) == n_entry)
		 {var lift = ev.lift_r;}
	else {var lift = cNode.getNode("thermal-lift").getValue();}
	cNode.getNode("thermal-lift").setValue(lift);
	compat_layer.setLift(lift);
	setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")-1);
	}
else if (ev.lift_flag == 2)
	{
	thermal_lift_stop();
	setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")-1);
	}
else if (ev.lift_flag == 3)
	{
	wave_lift_stop();
	setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")-1);
	}

}



#########################################
# compute thermal lift in detailed model 
#########################################

var ts_factor = func (t, alt, height) {

var t1 = 0.1; # fractional time at which lift is fully developed 
var t2 = 0.9; # fractional time at which lift starts to decay
var t3 = 1.0; # fractional time at which lift is gone

# no time dependence modelled yet
# return 1.0; 



var t_a = t - (alt/height) * t1 - t1;

if (t_a<0) {return 0.0;}
else if (t_a<t1) {return 0.5 + 0.5 * math.cos((1.0-t_a/t1)* math.pi);}
else if (t_a < t2) {return 1.0;}
else {return 0.5 - 0.5 * math.cos((1.0-(t2-t_a)/(t3-t2))*math.pi);}
}

var tl_factor = func (t, alt, height) {

var t1 = 0.1; # fractional time at which lift is fully developed 
var t2 = 0.9; # fractional time at which lift starts to decay
var t3 = 1.0; # fractional time at which lift is gone

# no time dependence modelled yet
# return 1.0; 

var t_a = t - (alt/height) * t1;

if (t_a<0) {return 0.0;}
else if (t_a<t1) {return 0.5 + 0.5 * math.cos((1.0-t_a/t1)* math.pi);}
else if (t_a < t2) {return 1.0;}
else  {return 0.5 - 0.5 * math.cos((1.0-(t2-t_a)/(t3-t2))*math.pi);}      
}


var calcLift_max = func (alt, max_lift, height) {
    
alt_agl = getprop("/position/altitude-agl-ft");

# no lift below ground
if (alt_agl < 0.0) {return 0.0;}   
    
# lift ramps up to full within 200 m
else if (alt_agl < 200.0*m_to_ft) 
	{return max_lift * 0.5 * (1.0 + math.cos((1.0-alt_agl/(200.0*m_to_ft))*math.pi));}

# constant max. lift in main body
else if ((alt_agl > 200.0*m_to_ft) and (alt < height))
	{return max_lift;}

# decreasing lift from cloudbase to 10% above base
else if ((alt > height ) and (alt < height*1.1)) 
	{return max_lift * 0.5 * (1.0 - math.cos((1.0-10.0*(alt-height)/height)*math.pi));}
    
# no lift available above
else {return 0.0;}
}



var calcLift = func (d, alt, R, height, cn, sh, max_lift, f_lift_radius, t) {

# radius of slice at given altitude
var r_total = (cn + alt/height*(1.0-cn)) * (R - R * (1.0- sh ) * (1.0 - ((2.0*alt/height)-1.0)*((2.0*alt/height)-1.0)));


# print("r_total: ", r_total, "d: ",d);
# print("alt: ", alt, "height: ",height);

# no lift if we're outside the radius or above the thermal
if ((d > r_total) or (alt > 1.1*height)) { return 0.0; } 

# fraction of radius providing lift
var r_lift = f_lift_radius * r_total;

# print("r_lift: ", r_lift);

# if we are in the sink portion, get the max. sink for this time and altitude and adjust for actual position
if ((d < r_total ) and (d > r_lift)) 
	{
	var s_max = 0.5 * calcLift_max(alt, max_lift, height) * ts_factor(t, alt, height);
	# print("s_max: ", s_max);
	return s_max * math.sin(math.pi * (1.0 + (d-r_lift) * (1.0/(r_total - r_lift))));
	}
# else we are in the lift portion, get the max. lift for this time and altitude and adjust for actual position
else
	{  
    	var l_max = calcLift_max(alt, max_lift, height) * tl_factor(t, alt, height);
	# print("l_max: ", l_max);
	return l_max * math.cos(math.pi * (d/(2.0 * r_lift)));
	}
}

#########################################
# compute wave lift in detailed model 
#########################################

var calcWaveLift = func (x,y, alt) {

var lift = wave.max_lift * math.cos((y/wave.y) * 1.5 * math.pi);

if (abs(x)/wave.x > 0.9)
	{
	lift = lift * (abs(x) - 0.9 * wave.x)/(0.1 * wave.x); 
	}



lift = lift * 2.71828 * math.exp(-alt/wave.height) * alt/wave.height;

var alt_agl = getprop("/position/altitude-agl-ft");

if (alt_agl < 1000.0)
	{
	lift = lift * (alt_agl/1000.0) * (alt_agl/1000.0);
	}

return lift;
}
	





###########################################################
# place a single cloud into a vector to be processed
# separately
###########################################################

var create_cloud_vec = func(path, lat, lon, alt, heading) {

if (path == "new") # we have to switch to new cloud generating routines
	{
	local_weather.cloudAssembly.lat = lat;
	local_weather.cloudAssembly.lon = lon;
	local_weather.cloudAssembly.alt = alt;	
	local_weather.cloudAssembly.top_shade = top_shade;
	local_weather.cloudAssembly.alpha_factor = alpha_factor;

	#print(lat," ",long, " ", alt);

	if (dynamics_flag == 1)
		{
		local_weather.cloudAssembly.mean_alt = cloud_mean_altitude;
		local_weather.cloudAssembly.flt = cloud_fractional_lifetime;
		local_weather.cloudAssembly.evolution_timestamp = cloud_evolution_timestamp;
		local_weather.cloudAssembly.rel_alt = cloudAssembly.alt - cloud_mean_altitude;
		}

	append(cloudAssemblyArray,cloudAssembly);

	# at this point we insert tracers for the depth buffer
	
	#if (local_weather.cloudAssembly.tracer_flag == 1)
	#	{	
	#	tracerAssembly = local_weather.cloud.new("Tracer", "default");
	#	tracerAssembly.texture_sheet = "/Models/Weather/nimbus_sheet1.rgb";
	#	tracerAssembly.n_sprites = 1;
	#	tracerAssembly.bottom_shade = 0.0;
	#	tracerAssembly.top_shade = 0.0;
	#	tracerAssembly.num_tex_x = 1;
	#	tracerAssembly.num_tex_y = 1;
	#	tracerAssembly.lat = lat;
	#	tracerAssembly.lon = lon;
	#	tracerAssembly.alt = alt + local_weather.cloudAssembly.min_height *0.35 * m_to_ft ;
	#	tracerAssembly.min_width = local_weather.cloudAssembly.min_width * 0.35;
	#	tracerAssembly.max_width = local_weather.cloudAssembly.max_width * 0.35;
	#	tracerAssembly.min_height = local_weather.cloudAssembly.min_height * 0.35;
	#	tracerAssembly.max_height = local_weather.cloudAssembly.max_height * 0.35;
	#	tracerAssembly.min_cloud_width = local_weather.cloudAssembly.min_cloud_width * 0.35;
	#	tracerAssembly.min_cloud_height = local_weather.cloudAssembly.min_cloud_height * 0.35;
	#	tracerAssembly.z_scale = local_weather.cloudAssembly.z_scale;
	#	append(cloudAssemblyArray,tracerAssembly);
	#	}

	return;
	}

append(clouds_path,path);
append(clouds_lat,lat);
append(clouds_lon,lon);
append(clouds_alt,alt);
append(clouds_orientation,heading);

# globals (needed for Cumulus clouds) should be set if needed by the main cloud generating call

if (dynamics_flag ==1)
	{
	append(clouds_mean_alt, cloud_mean_altitude);
	append(clouds_flt, cloud_fractional_lifetime);
	append(clouds_evolution_timestamp,cloud_evolution_timestamp);
	}

}
###########################################################
# clear all clouds and effects
###########################################################

var clear_all = func {

# clear the clouds and models

var cloudNode = props.globals.getNode(lw~"clouds", 1);
cloudNode.removeChildren("tile");

var modelNode = props.globals.getNode("models", 1).getChildren("model");

foreach (var m; modelNode)
	{
	var l = m.getNode("tile-index",1).getValue();
	if (l != nil)
		{
		m.remove();
		}
	}


# remove the hard-coded clouds

foreach (c; weather_tile_management.cloudArray)
	{
	c.remove();
	}
setsize(weather_tile_management.cloudArray,0);

# reset pressure continuity

weather_tiles.last_pressure = 0.0;

# stop all loops

setprop(lw~"effect-loop-flag",0);
setprop(lw~"interpolation-loop-flag",0);
setprop(lw~"tile-loop-flag",0);
setprop(lw~"lift-loop-flag",0);
setprop(lw~"wave-loop-flag",0);
setprop(lw~"dynamics-loop-flag",0);
setprop(lw~"timing-loop-flag",0);
setprop(lw~"buffer-loop-flag",0);
setprop(lw~"housekeeping-loop-flag",0);
setprop(lw~"convective-loop-flag",0);
setprop(lw~"shadow-loop-flag",0);
setprop(lw~"thunderstorm-loop-flag",0);

weather_dynamics.convective_loop_kill_flag = 1; # long-running loop needs a different scheme to end

# also remove rain, snow, haze and light effects

compat_layer.setRain(0.0);
compat_layer.setSnow(0.0);
compat_layer.setLight(1.0);


# set placement indices to zero

setprop(lw~"clouds/placement-index",0);
setprop(lw~"clouds/model-placement-index",0);
setprop(lw~"effect-volumes/effect-placement-index",0);
setprop(lw~"effect-volumes/number",0);
setprop(lw~"effect-volumes/number-active-rain",0);
setprop(lw~"effect-volumes/number-active-snow",0);
setprop(lw~"effect-volumes/number-active-vis",0);
setprop(lw~"effect-volumes/number-active-turb",0);
setprop(lw~"effect-volumes/number-active-lift",0);
setprop(lw~"effect-volumes/number-active-sat",0);
setprop(lw~"tiles/tile-counter",0);


# remove any quadtrees and arrays

settimer ( func { setsize(weather_dynamics.cloudQuadtrees,0);},0.1); # to avoid error generation in this frame
setsize(effectVolumeArray,0);
n_effectVolumeArray = 0;

# remove any impostors

weather_tile_management.remove_impostors();

# clear out the visual shadows

for (var i = 0; i<cloudShadowArraySize; i=i+1)
	{
	setprop("/local-weather/cloud-shadows/cloudpos-x["~i~"]",0.0);
	setprop("/local-weather/cloud-shadows/cloudpos-y["~i~"]",0.0);
	}

# clear any wxradar echos

if (wxradar_support_flag ==1)
	{props.globals.getNode("/instrumentation/wxradar", 1).removeChildren("storm");}

# if we have used METAR, we may no longer want to do so

metar_flag = 0;


settimer ( func {
	setsize(weather_tile_management.modelArrays,0);
	setsize(weather_dynamics.tile_wind_direction,0);
	setsize(weather_dynamics.tile_wind_speed,0);
	setsize(weather_tile_management.cloudBufferArray,0);
	setsize(weather_tile_management.cloudSceneryArray,0);
	setsize(alt_20_array,0);
	setsize(alt_50_array,0);
	setsize(alt_min_array,0);
	setsize(alt_mean_array,0);
	setsize(weather_dynamics.cloudShadowArray,0);
	setsize(local_weather.thunderstormArray,0);
	setsize(weather_dynamics.cloudShadowCandidateArray,0);
	setsize(weather_dynamics.tile_convective_altitude,0);
	setsize(weather_dynamics.tile_convective_strength,0);
	setsize(weatherStationArray,0);
	setsize(windIpointArray,0);
	setsize(atmosphereIpointArray,0);
	setprop(lw~"clouds/buffer-count",0);
	setprop(lw~"clouds/cloud-scenery-count",0);
	weather_tile_management.n_cloudSceneryArray = 0;
	compat_layer.setScattering(0.8);
	compat_layer.setOvercast(0.0);
	setprop(lwi~"ipoint-number",0);
	setprop(lwi~"atmosphere-ipoint-number", 0);
	},0);

setprop(lw~"tmp/presampling-status", "idle");

# reset the random store

weather_tiles.rnd_store = rand();

# default 3d clouds layer wrapping back on, just in case

setprop("/sim/rendering/clouds3d-wrap",1);

# hand precipitation control back to automatic

props.globals.getNode("/environment/precipitation-control/detailed-precipitation").setBoolValue("false");

# indicate that we are no longer running


local_weather_running_flag = 0;

}



###########################################################
# detailed Cumulus clouds created from multiple cloudlets
###########################################################

var create_detailed_cumulus_cloud = func (lat, lon, alt, size) {


# various distribution biases

var edge_bias = convective_texture_mix;
size = size + convective_size_bias;
height_bias = 1.0;
if (edge_bias > 0.0) {height_bias = height_bias +  15.0 *edge_bias + 20.0 * rand() * edge_bias;}


#height_bias = 6.0;

	
	if (size > 2.0)
		{
		if (rand() > (size - 2.0))
			{create_cumulonimbus_cloud(lat, lon, alt, size); }
		else
			{create_cumulonimbus_cloud_rain(lat, lon, alt, size, 0.1 + 0.2* rand());}
		return;
		}

	else if (size>1.5)
		{
		var type = "Congestus";

		var height = 400;
		var n = 3;
		var x = 700.0;
		var y = 200.0;
		var edge = 0.2;
		
		var alpha = rand() * 180.0;
		edge = edge + edge_bias;		

		create_streak(type,lat,lon, alt+ 0.3* (height )-offset_map["Congestus"], height,n,0.0,edge,x,1,0.0,0.0,y,alpha,1.0);

		var type = "Cu (volume)";
		var height = 400;
		var n = 10 + int(height_bias);
		var x = 1400.0;
		var y = 400.0;
		var edge = 0.2;
		
		edge = edge + edge_bias;		

		create_streak(type,lat,lon, alt+ 0.5* (height * height_bias )-offset_map["Cumulus"], height * height_bias ,n,0.0,edge,x,1,0.0,0.0,y,alpha,1.0);

		var btype = "Congestus bottom";
		var n_b = 6;
		height_bias = 1.0;
		var top_shade_store = local_weather.top_shade;
		if (top_shade_store > 0.6) {local_weather.top_shade = 0.6;}
		create_streak(btype,lat,lon, alt -offset_map["Congestus"] -900.0, 100.0,n_b,0.0,edge,0.3*x,1,0.0,0.0,0.3*y,alpha,1.0);
		local_weather.top_shade = top_shade_store;

		if (local_weather.cloud_shadow_flag == 1)
			{
			var cs = local_weather.cloudShadow.new(lat, lon, 0.9 * (1.5 * x)/5000.0 , 0.9);
			cs.index = getprop(lw~"tiles/tile-counter");
			append(cloudShadowCandidateArray,cs);
			}


		}
	else if (size>1.1)
		{
		var type = "Cumulus (cloudlet)";
		var btype = "Cumulus bottom";
		var height = 200;
		var n = 6 + int(height_bias);
		var n_b = 2;
		var x = 900.0;
		var y = 200.0;
		var edge = 0.2;

		var alpha = rand() * 180.0;
		edge = edge + edge_bias;
		create_streak(type,lat,lon, alt+ 0.5* (height* height_bias )-offset_map["Cumulus"], height * height_bias,n,0.0,edge,x,1,0.0,0.0,y,alpha,1.0);

		height_bias = 1.0;
		var top_shade_store = local_weather.top_shade;
		if (top_shade_store > 0.6) {local_weather.top_shade = 0.6;}
		create_streak(btype,lat,lon, alt -offset_map["Cumulus"] - 200.0, 100.0,n_b,0.0,edge,0.3*x,1,0.0,0.0,0.3*y,alpha,1.0);
		local_weather.top_shade = top_shade_store;

		if (local_weather.cloud_shadow_flag == 1)
			{
			var cs = local_weather.cloudShadow.new(lat, lon, 0.9 * (1.5 * x)/5000.0 , 0.8);
			cs.index = getprop(lw~"tiles/tile-counter");
			append(cloudShadowCandidateArray,cs);
			}

		}
	else if (size>0.8)
		{
		var type = "Cumulus (cloudlet)";
		var height = 150;
		var n = 4 + int(height_bias);
		var x = 300.0;
		var y = 300.0;
		var edge = 0.3;

		var alpha = rand() * 180.0;
		edge = edge + edge_bias;
		create_streak(type,lat,lon, alt+ 0.5* (height * height_bias )-offset_map["Cumulus"], height * height_bias,n,0.0,edge,x,1,0.0,0.0,y,alpha,1.0);

		n = 2;
		x = 700.0;
		y = 200.0;
		edge = 1.0;
		create_streak(type,lat,lon, alt+ 0.5* (height*height_bias )-offset_map["Cumulus"], height * height_bias,n,0.0,edge,x,1,0.0,0.0,y,alpha,1.0);

		if (local_weather.cloud_shadow_flag == 1)
			{
			var cs = local_weather.cloudShadow.new(lat, lon, 0.9 * (1.5 * x)/5000.0 , 0.7);
			cs.index = getprop(lw~"tiles/tile-counter");
			append(cloudShadowCandidateArray,cs);
			}


		}

	else if (size>0.4)
		{
		var type = "Cumulus (cloudlet)";
		var height = 100;
		var n = 2 + int(height_bias * 0.5);
		var x = 600.0;
		var y = 100.0;
		var edge = 1.0;

		var alpha = rand() * 180.0;
		edge = edge + edge_bias;
		create_streak(type,lat,lon, alt+ 0.5* (height * height_bias)-offset_map["Cumulus"], height * height_bias,n,0.0,edge,x,1,0.0,0.0,y,alpha,1.0);

		if (local_weather.cloud_shadow_flag == 1)
			{
			var cs = local_weather.cloudShadow.new(lat, lon, 0.9 * (1.0 * x)/5000.0 , 0.6);
			cs.index = getprop(lw~"tiles/tile-counter");
			append(cloudShadowCandidateArray,cs);
			}


		}
	else 
		{
		var type = "Cumulus (whisp)";
		var height = 100;
		var n = 1;
		var x = 100.0;
		var y = 100.0;
		var edge = 1.0;

		var alpha = rand() * 180.0;
		edge = edge + edge_bias;
		create_streak(type,lat,lon, alt+ 0.3* (height )-offset_map["Cumulus"], height,n,0.0,edge,x,1,0.0,0.0,y,alpha,1.0);
		}
} 

###########################################################
# detailed small Cumulonimbus clouds created from multiple cloudlets
###########################################################

var create_cumulonimbus_cloud = func(lat, lon, alt, size) {


create_cloudbox("Cb_box", lat, lon, alt, 2500.0,2000.0, 1000.0,10, 0.2, 0.1, 1.0, 1, 0.8, 0.1, 6);

#create_cloudbox = func (type, blat, blon, balt, dx,dy,dz,n, f_core, r_core, h_core, n_core, f_bottom, h_bottom, n_bottom)
}

###########################################################
# detailed small Cumulonimbus and rain created from multiple cloudlets
###########################################################

var create_cumulonimbus_cloud_rain = func(lat, lon, alt, size, rain) {


create_cloudbox("Cb_box", lat, lon, alt, 2500.0,2000.0, 1000.0,10, 0.2, 0.1, 1.0, 1, 0.8, 0.1, 6);



# place a rain texture

var path = "Models/Weather/rain2.xml";
if (thread_flag == 1)
				{create_cloud_vec(path, lat, lon, alt, 0.0);}
			else 
				{compat_layer.create_cloud(path, lat, lon, alt, 0.0);}

		

# and some rain underneath

create_effect_volume(1, lat, lon, 2000.0, 2000.0, 0.0, 0.0, alt+1000.0, 8000.0 + 8000.0 * rand(), rain, -1, -1, -1 ,1,-1 );


}


###########################################################
# wrappers for convective cloud system to distribute
# call across several frames if needed
###########################################################

var create_cumosys = func (blat, blon, balt, nc, size) {


# realistic Cumulus has somewhat larger models, so compensate to get the same coverage
if (detailed_clouds_flag == 1) 
	{nc = int(0.7 * nc);}

nc = int(nc / cumulus_efficiency_factor);

if (thread_flag ==  1)
	{setprop(lw~"tmp/convective-status", "computing");
	cumulus_loop(blat, blon, balt, nc, size);}

else
	{create_cumulus(blat, blon, balt, nc, size);
	if (debug_output_flag == 1) 
		{print("Convective system done!");}
	}
}



var cumulus_loop = func (blat, blon, balt, nc, size) {

if (local_weather_running_flag == 0) {return;}

if (local_weather.features.fast_geodinfo == 0)
	{var n = int(25/cumulus_efficiency_factor);}
else
	{var n = int(200/cumulus_efficiency_factor);}

if (nc < 0) 
	{
	if (debug_output_flag == 1) 
		{print("Convective system done!");}
	setprop(lw~"tmp/convective-status", "idle");
	assemble_effect_array();
	convective_size_bias = 0.0;
	height_bias = 1.0;
	return;
	}

create_cumulus(blat, blon, balt, n, size);

settimer( func {cumulus_loop(blat, blon, balt, nc-n, size) },0);
}

###########################################################
# place a convective cloud system
###########################################################

var create_cumulus = func (blat, blon, balt, nc, size) {



var path = "Models/Weather/blank.ac";
var i = 0;
var p = 0.0;
var rn = 0.0;
var place_lift_flag = 0;
var strength = 0.0;
var detail_flag = detailed_clouds_flag;

var alpha = getprop(lw~"tmp/tile-orientation-deg") * math.pi/180.0; # the tile orientation

var tile_index = getprop(lw~"tiles/tile-counter");
var alt_base = balt;
if (presampling_flag==1) {alt_base = alt_20_array[tile_index -1];}




#var sec_to_rad = 2.0 * math.pi/86400; # conversion factor for sinusoidal dependence on daytime

calc_geo(blat);

# get the local time of the day in seconds

var t = getprop("sim/time/utc/day-seconds");
t = t + getprop("sim/time/local-offset");

# print("t is now:", t);

# and make a simple sinusoidal model of thermal strength

# daily variation in number of thermals, peaks at noon
var t_factor1 = 0.5 * (1.0-math.cos((t * sec_to_rad))); 

# daily variation in strength of thermals, peaks around 15:30
var t_factor2 = 0.5 * (1.0-math.cos((t * sec_to_rad)-0.9)); 


# number of possible thermals equals overall strength times daily variation times geographic variation
# this is a proxy for solar thermal energy

nc = t_factor1 * nc * math.cos(blat/180.0*math.pi); 

# var thermal_conditions = getprop(lw~"config/thermal-properties");


while (i < nc) {

	p = 0.0;
	place_lift_flag = 0;
	strength = 0.0;

	# pick a trial position inside the tile and rotate by tile orientation angle
	var x = (2.0 * rand() - 1.0) * size;
	var y = (2.0 * rand() - 1.0) * size; 

	var lat = blat + (y * math.cos(alpha) - x * math.sin(alpha)) * m_to_lat;
	var lon = blon + (x * math.cos(alpha) + y * math.sin(alpha)) * m_to_lon;

	# now check ground cover type on chosen spot
	var info = geodinfo(lat, lon);

	if (info != nil) {
	var elevation = info[0] * m_to_ft;
	if (info[1] != nil){
         var landcover = info[1].names[0];
	 if (contains(landcover_map,landcover)) {p = p + landcover_map[landcover];}
	 else {logprint(LOG_INFO,"local_weather: Unknown landcover ",p, " ", info[1].names[0]);}
	}}
	else {
		# to avoid gaps, we create default clouds

		p = p + 0.1;		
		var elevation = alt_base;
		# continue;
		}


	# apply some optional corrections, biases clouds towards higher elevations

	var terrain_altitude_factor = 1.0;
	var terrain_strength_factor = 1.0;

	if (detailed_terrain_interaction_flag == 1)
		{
		
		terrain_altitude_factor = get_terrain_altitude_factor(tile_index, balt, elevation);
		terrain_strength_factor = get_terrain_strength_factor(terrain_altitude_factor);

		}


	# then decide if the thermal energy at the spot generates an updraft and a cloud

	if (rand() < (p * cumulus_efficiency_factor * terrain_altitude_factor)) # we decide to place a cloud at this spot
		{
	

		# check if we have a terrain elevation analysis available and can use a 
		# detailed placement altitude correction

		if (presampling_flag == 1) 
			{
			
			if (detailed_terrain_interaction_flag == 1)
				{
				var grad = get_terrain_gradient(lat, lon, elevation, alpha, 1000.0);
				}
			else 
				{var grad = 0.0;}


			var place_alt = get_convective_altitude(balt, elevation, getprop(lw~"tiles/tile-counter"), grad);
			}
		else {var place_alt = balt;}
		
		# no cloud placement into the ground
		if (place_alt < elevation) {continue;}

		# if we're in a lee, we may not want to place the cloud

		if (detailed_terrain_interaction_flag == 1)
				{
				var p_lee_suppression = get_lee_bias(grad, tile_index);
				if (rand() > p_lee_suppression) {continue;} 
				}

	
		# now decide on the strength of the thermal at the spot and on cloud size

		var rn = rand();
		strength = (1.5 * rn + (2.0 * p * terrain_strength_factor)) * t_factor2;  
		
		# the terrain effect cannot create Cb development, so we have to curb
		# the strength if it would not have been Cb otherwise

		if (strength > 2.0)
			{
			if (((1.5 * rn + (2.0 * p)) * t_factor2) < 2.0)
				{strength = 1.7 + rand() * 0.2;}
			}


		if (strength > 1.0) {place_lift_flag = 1;}

		cloud_mean_altitude = place_alt;
		cloud_fractional_lifetime = rand();
		cloud_evolution_timestamp = weather_dynamics.time_lw;



		if (generate_thermal_lift_flag != 3) # no clouds if we produce blue thermals
			{		
			create_detailed_cumulus_cloud(lat, lon, place_alt, strength);
			}	

		# now see if we need to create a thermal - first check the flag
		if (generate_thermal_lift_flag == 1) # thermal by constant
			{
			# now check if convection is strong
			if (place_lift_flag == 1)
				{
				var lift = 3.0 + 10.0 * (strength -1.0);
				var radius = 500 + 500 * rand();
				#print("Lift: ", lift * ft_to_m - 1.0);
				create_effect_volume(1, lat, lon, radius, radius, 0.0, 0.0, place_alt+500.0, -1, -1, -1, -1, lift, 1,-1);
				} # end if place_lift_flag		
			} # end if generate-thermal-lift-flag	
		else if ((generate_thermal_lift_flag == 2) or (generate_thermal_lift_flag == 3)) # thermal by function
			{

			if (place_lift_flag == 1)
				{
				var lift = (3.0 + 10.0 * (strength -1.0))/thermal_conditions;
				var radius = (500 + 500 * rand())*thermal_conditions;

				create_effect_volume(1, lat, lon, 1.1*radius, 1.1*radius, 0.0, 0.0, place_alt*1.15, -1, -1, -1, lift*0.03, lift, -2,-1);
				} # end if place_lift_flag

			} # end if generate-thermal-lift-flag


		} # end if rand < p
	i = i + 1;
	} # end while

}





#################################################################
# respawn convective clouds to compensate for decay
# the difference being that new clouds get zero fractional 
# lifetime and are placed based on terrain with a different weight
##################################################################

var recreate_cumulus = func (blat, blon, balt, alpha, nc, size, tile_index) {

var path = "Models/Weather/blank.ac";
var i = 0;
var p = 0.0;
var rn = 0.0;
var place_lift_flag = 0;
var strength = 0.0;
var detail_flag = detailed_clouds_flag;

alpha = alpha * math.pi/180.0; # the tile orientation


# current aircraft position

var alat = getprop("position/latitude-deg");
var alon = getprop("position/longitude-deg");

# get the local time of the day in seconds

var t = getprop("sim/time/utc/day-seconds");
t = t + getprop("sim/time/local-offset");


# and make a simple sinusoidal model of thermal strength

# daily variation in number of thermals, peaks at noon
var t_factor1 = 0.5 * (1.0-math.cos((t * sec_to_rad))); 

# daily variation in strength of thermals, peaks around 15:30
var t_factor2 = 0.5 * (1.0-math.cos((t * sec_to_rad)-0.9)); 


# number of possible thermals equals overall strength times daily variation times geographic variation
# this is a proxy for solar thermal energy

nc = t_factor1 * nc * math.cos(blat/180.0*math.pi); 

# var thermal_conditions = getprop(lw~"config/thermal-properties");

var alt_base = alt_20_array[tile_index -1];

while (i < nc) {

	p = 0.0;
	place_lift_flag = 0;
	strength = 0.0;

	# pick a trial position inside the tile and rotate by tile orientation angle
	var x = (2.0 * rand() - 1.0) * size;
	var y = (2.0 * rand() - 1.0) * size; 

	var lat = blat + (y * math.cos(alpha) - x * math.sin(alpha)) * m_to_lat;
	var lon = blon + (x * math.cos(alpha) + y * math.sin(alpha)) * m_to_lon;

	# check if the cloud would be spawned in visual range, if not don't bother
	var d_sq = calc_d_sq(alat, alon, lat, lon);

	if (math.sqrt(d_sq) > weather_tile_management.cloud_view_distance)
		{i = i+1; continue;}

	# now check ground cover type on chosen spot
	var info = geodinfo(lat, lon);

	if (info != nil) {
	var elevation = info[0] * m_to_ft;
	if (info[1] != nil){
         var landcover = info[1].names[0];
	 if (contains(landcover_map,landcover)) {p = p + landcover_map[landcover];}
	 else {print(p, " ", info[1].names[0]);}
	}}
	else {
		# to avoid gaps, we create default clouds

		p = p + 0.1;		
		var elevation = alt_base;
		# continue;
		}


	# apply some optional corrections, biases clouds towards higher elevations

	var terrain_altitude_factor = 1.0;
	var terrain_strength_factor = 1.0;

	if (detailed_terrain_interaction_flag == 1)
		{
		terrain_altitude_factor = get_terrain_altitude_factor(tile_index, balt, elevation);
		terrain_strength_factor = get_terrain_strength_factor(terrain_altitude_factor);
		}




	# check if to place a cloud with weight sqrt(p), the lifetime gets another sqrt(p) factor
	
	if (rand() > math.sqrt(p * cumulus_efficiency_factor * terrain_altitude_factor))
		{i=i+1; continue;}


	# then calculate the strength of the updraft
		
	strength = (1.5 * rand() + (2.0 * p * terrain_strength_factor)) * t_factor2; # the strength of thermal activity at the spot
	if (strength > 1.0)  
		{
		path = select_cloud_model("Cumulus","large"); place_lift_flag = 1;
		}
	else {path = select_cloud_model("Cumulus","small");}

	if (presampling_flag == 1) 
		{
		var place_alt = get_convective_altitude(balt, elevation, tile_index,0.0);
		}
	else {var place_alt = balt;}


	# no cloud placement into the ground
	if (place_alt < elevation) {continue;}

	# if we're in a lee, we may not want to place the cloud

	if (detailed_terrain_interaction_flag == 1)
			{
			var p_lee_suppression = get_lee_bias(grad, tile_index);
				if (rand() > math.sqrt(p_lee_suppression)) {continue;} 
			}
		
	cloud_mean_altitude = place_alt;
	cloud_fractional_lifetime = 0.0;
	cloud_evolution_timestamp = weather_dynamics.time_lw;

	compat_layer.cloud_mean_altitude = place_alt;
	compat_layer.cloud_flt = cloud_fractional_lifetime;
	compat_layer.cloud_evolution_timestamp = cloud_evolution_timestamp;

	if (generate_thermal_lift_flag != 3) # no clouds if we produce blue thermals
		{		
		if (thread_flag == 1)
			{
			thread_flag = 0; # create clouds immediately
			if (detail_flag == 0){compat_layer.create_cloud(path,lat,lon, place_alt, 0.0);}
			else {create_detailed_cumulus_cloud(lat, lon, place_alt, strength);}
			thread_flag = 1; # and restore threading
			}
		else
			{
			if (detail_flag == 0){compat_layer.create_cloud(path, lat, lon, place_alt, 0.0);}
			else {create_detailed_cumulus_cloud(lat, lon, place_alt, strength);}
			}
		}	

	if (generate_thermal_lift_flag == 1) # thermal by constant
		{
		if (place_lift_flag == 1)
			{
			var lift = 3.0 + 10.0 * (strength -1.0);
			var radius = 500 + 500 * rand();
			create_effect_volume(1, lat, lon, radius, radius, 0.0, 0.0, place_alt+500.0, -1, -1, -1, -1, lift, 1,-1);
			} # end if place_lift_flag		
		} # end if generate-thermal-lift-flag	
	else if ((generate_thermal_lift_flag == 2) or (generate_thermal_lift_flag == 3)) # thermal by function
		{
			if (place_lift_flag == 1)
			{
			var lift = (3.0 + 10.0 * (strength -1.0))/thermal_conditions;
			var radius = (500 + 500 * rand())*thermal_conditions;

			create_effect_volume(1, lat, lon, 1.1*radius, 1.1*radius, 0.0, 0.0, place_alt*1.15, -1, -1, -1, lift*0.03, lift, -2,-1);
			} # end if place_lift_flag

		} # end if generate-thermal-lift-flag


	i = i + 1;
	} # end while

}







###########################################################
# place a barrier cloud system 
###########################################################

var create_rise_clouds = func (blat, blon, balt, nc, size, winddir, dist) {

var path = "Models/Weather/blank.ac";
var i = 0;
var p = 0.0;
var rn = 0.0;
var nsample = 10;
var counter = 0;
var dir = (winddir + 180.0) * math.pi/180.0;
var step = dist/nsample;

calc_geo(blat);

while (i < nc) {

	counter = counter + 1;
	p = 0.0; 

	var x = (2.0 * rand() - 1.0) * size;
	var y = (2.0 * rand() - 1.0) * size; 

	var lat = blat + y * m_to_lat;
	var lon = blon + x * m_to_lon;

	var elevation = compat_layer.get_elevation(lat, lon);
	
	#print("elevation: ", elevation, "balt: ", balt);

	if ((elevation < balt) and (elevation != -1.0))
	{
	for (var j = 0; j<nsample; j=j+1)
		{
		d = j * step;
		x = d * math.sin(dir);
		y = d * math.cos(dir);
		var tlat = lat + y * m_to_lat;
		var tlon = lon + x * m_to_lon;
		
		#print("x: ", x, "y: ", y);

		var elevation1 = compat_layer.get_elevation(tlat,tlon);	
		#print("elevation1: ", elevation1, "balt: ", balt);
	
		if (elevation1 > balt)
			{
			p = 1.0 - j * (1.0/nsample);
			#p = 1.0;
			break;
			}
		
		}
	}
	if (counter > 500) {print("Cannot place clouds - exiting..."); i = nc;}
	if (rand() < p)
		{
		path = select_cloud_model("Stratus (structured)","large");
		compat_layer.create_cloud(path, lat, lon, balt, 0.0);
		counter = 0;
		i = i+1;
		}
	
	} # end while

}


###########################################################
# place a cloud streak 
###########################################################

var create_streak = func (type, blat, blong, balt, alt_var, nx, xoffset, edgex, x_var, ny, yoffset, edgey, y_var, direction, tri) {

var flag = 0;
var path = "Models/Weather/blank.ac";
calc_geo(blat);
var dir = direction * math.pi/180.0;

var ymin = -0.5 * ny * yoffset;
var xmin = -0.5 * nx * xoffset;
var xinc = xoffset * (tri-1.0) /ny;
 
var jlow = int(nx*edgex);
var ilow = int(ny*edgey);


for (var i=0; i<ny; i=i+1)
	{
	var y = ymin + i * yoffset; 
	
	for (var j=0; j<nx; j=j+1)
		{
		var y0 = y + y_var * 2.0 * (rand() -0.5);
		var x = xmin + j * (xoffset + i * xinc) + x_var * 2.0 * (rand() -0.5);
		var lat = blat + m_to_lat * (y0 * math.cos(dir) - x * math.sin(dir));
		var long = blong + m_to_lon * (x * math.cos(dir) + y0 * math.sin(dir));

		var alt = balt + alt_var * 2 * (rand() - 0.5);
		
		flag = 0;
		var rn = 6.0 * rand();

		if (((j<jlow) or (j>(nx-jlow-1))) and ((i<ilow) or (i>(ny-ilow-1)))) # select a small or no cloud		
			{
			if (rn > 2.0) {flag = 1;} else {path = select_cloud_model(type,"small");}
			}
		if ((j<jlow) or (j>(nx-jlow-1)) or (i<ilow) or (i>(ny-ilow-1))) 	
			{
			if (rn > 5.0) {flag = 1;} else {path = select_cloud_model(type,"small");}
			}
		else	{ # select a large cloud
			if (rn > 5.0) {flag = 1;} else {path = select_cloud_model(type,"large");}
			}


		if (flag==0){
			if (thread_flag == 1)
				{create_cloud_vec(path, lat, long, alt, 0.0);}
			else
				{compat_layer.create_cloud(path, lat, long, alt, 0.0);}
			

				}
		}

	} 

}







###########################################################
# place a cloud layer with a gap in the middle
# (useful to reduce cloud count in large thunderstorms)
###########################################################

var create_hollow_layer = func (type, blat, blon, balt, bthick, rx, ry, phi, density, edge, gap_fraction) {


var i = 0;
var area = math.pi * rx * ry;
var n = int(area/80000000.0 * 100 * density);
var path = "Models/Weather/blank.ac";

phi = phi * math.pi/180.0;

if (contains(cloud_vertical_size_map, type)) 
		{var alt_offset = cloud_vertical_size_map[type]/2.0 * m_to_ft;}
	else {var alt_offset = 0.0;}

while(i<n)
	{
	var x = rx * (2.0 * rand() - 1.0); 
	var y = ry * (2.0 * rand() - 1.0); 
	var alt = balt + bthick * rand() + 0.8 * alt_offset;
	var res = (x*x)/(rx*rx) + (y*y)/(ry*ry);
	

	if ((res < 1.0) and (res > (gap_fraction * gap_fraction)))
		{
		var lat = blat + m_to_lat * (y * math.cos(phi) - x * math.sin(phi));
		var lon = blon + m_to_lon * (x * math.cos(phi) + y * math.sin(phi));
		if (res > ((1.0 - edge) * (1.0- edge)))
			{
			if (rand() > 0.4) {
				path = select_cloud_model(type,"small");
				compat_layer.create_cloud(path, lat, lon, alt, 0.0);
				}
			}
		else {
			path = select_cloud_model(type,"large");
			if (thread_flag == 1)
				{create_cloud_vec(path, lat, lon, alt, 0.0);}
			else 
				{compat_layer.create_cloud(path, lat, lon, alt, 0.0);}
			}
		i = i + 1;
		}
	else	# we are in the central gap region
		{
		i = i + 1;
		}
	}

i = 0;


}




###########################################################
# place a cloud box
###########################################################


var create_cloudbox = func (type, blat, blon, balt, dx,dy,dz,n, f_core, r_core, h_core, n_core, f_bottom, h_bottom, n_bottom) {

var phi = 0;

# first get core coordinates

var core_dx = dx * f_core;
var core_dy = dy * f_core;
var core_dz = dz * h_core;

var core_x_offset = (1.0 * rand() - 0.5) *  ((dx - core_dx) * r_core);
var core_y_offset = (1.0 * rand() - 0.5) *  ((dy - core_dy) * r_core);

# get the bottom geometry

var bottom_dx = dx * f_bottom;
var bottom_dy = dy * f_bottom;
var bottom_dz = dz * h_bottom;

var bottom_offset = 400.0; # in practice, need a small shift

# fill the main body of the box

for (var i=0; i<n; i=i+1)
	{

	var x = 0.5 * dx * (2.0 * rand() - 1.0); 
	var y = 0.5 * dy * (2.0 * rand() - 1.0);
	
	# veto in core region
	if ((x > core_x_offset - 0.5 * core_dx) and (x < core_x_offset + 0.5 * core_dx))
		{
		if ((y > core_y_offset - 0.5 * core_dy) and (y < core_y_offset + 0.5 * core_dy))
			{
			i = i -1;
			continue;
			}
		}
	 
	var alt = balt + bottom_dz + bottom_offset +  dz * rand();
	
	var lat = blat + m_to_lat * (y * math.cos(phi) - x * math.sin(phi));
	var lon = blon + m_to_lon * (x * math.cos(phi) + y * math.sin(phi));

	var path = select_cloud_model(type,"standard");

	
	create_cloud_vec(path, lat, lon, alt, 0.0);

	}

# fill the core region

for (var i=0; i<n_core; i=i+1)
	{
	var x = 0.5 * core_dx * (2.0 * rand() - 1.0); 
	var y = 0.5 * core_dy * (2.0 * rand() - 1.0);
	var alt = balt + bottom_dz + bottom_offset + core_dz * rand();


	var lat = blat + m_to_lat * (y * math.cos(phi) - x * math.sin(phi));
	var lon = blon + m_to_lon * (x * math.cos(phi) + y * math.sin(phi));

	var path = select_cloud_model(type,"core");

	if (thread_flag == 1)
			{create_cloud_vec(path, lat, lon, alt, 0.0);}
		else
			{compat_layer.create_cloud(path, lat, lon, alt, 0.0);}

	}

# fill the bottom region


for (var i=0; i<n_bottom; i=i+1)
	{
	var x = 0.5 * bottom_dx * (2.0 * rand() - 1.0); 
	var y = 0.5 * bottom_dy * (2.0 * rand() - 1.0);
	var alt = balt + bottom_dz * rand();


	var lat = blat + m_to_lat * (y * math.cos(phi) - x * math.sin(phi));
	var lon = blon + m_to_lon * (x * math.cos(phi) + y * math.sin(phi));

	var path = select_cloud_model(type,"bottom");

	var top_shade_store = local_weather.top_shade;
	if (top_shade_store > 0.6) {local_weather.top_shade = 0.6;}
	if (thread_flag == 1)
			{create_cloud_vec(path, lat, lon, alt, 0.0);}
		else
			{compat_layer.create_cloud(path, lat, lon, alt, 0.0);}
	local_weather.top_shade = top_shade_store;

	}


}



###########################################################
# terrain presampling initialization
###########################################################

var terrain_presampling_start = func (blat, blon, nc, size, alpha) {

# terrain presampling start is always used the first time, and initializes
# the hard-coded routine if that is available since the hard-coded routine cannot
# be yet read out on startup
	
# initialize the result vector

setsize(terrain_n,40);
for(var j=0;j<40;j=j+1){terrain_n[j]=0;}

if (thread_flag == 1)
	{
	var status = getprop(lw~"tmp/presampling-status");
	if (status != "idle") # we try a second later
		{
		settimer( func {terrain_presampling_start(blat, blon, nc, size, alpha);},1.00);
		return;
		}
	else	
		{
		setprop(lw~"tmp/presampling-status", "sampling");
		terrain_presampling_loop (blat, blon, nc, size, alpha);
		}
	}
else
	{
	terrain_presampling(blat, blon, nc, size, alpha);
	terrain_presampling_analysis();
	setprop(lw~"tmp/presampling-status", "finished");
	}
	
if (compat_layer.features.terrain_presampling == 1)
	{
	print("Starting hard-coded terrain presampling");
	setprop("/environment/terrain/area[0]/enabled",1);
	setprop(lw~"tmp/presampling-status", "sampling");
	setprop("/environment/terrain/area[0]/enabled", 1 );
	setprop("/environment/terrain/area[0]/input/latitude-deg", blat );
	setprop("/environment/terrain/area[0]/input/longitude-deg", blon );
	setprop("/environment/terrain/area[0]/input/use-aircraft-position",1);
	setprop("/environment/terrain/area[0]/input/radius-m",45000.0);

	setprop("/environment/terrain/area[0]/output/valid", 0 );

	}
}

###########################################################
# terrain presampling loop
###########################################################

var terrain_presampling_loop = func (blat, blon, nc, size, alpha) {

if ((local_weather_running_flag == 0) and (local_weather_startup_flag == 0)) {return;}


var n = 25;
var n_out = 25;
if (local_weather.features.fast_geodinfo == 0)
	{
	# dynamically drop accuracy if framerate is low

	var dt = getprop("/sim/time/delta-sec");

	if (dt > 0.2) # we have below 20 fps
		{n = 5;}
	else if (dt > 0.1) # we have below 10 fps
		{n = 10;}
	else if (dt > 0.05) # we have below 5 fps
		{n = 15;}
	}
else
	{
	n = 250; n_out = 250;
	}

if (nc <= 0) # we're done and may analyze the result
	{
	terrain_presampling_analysis();
	if (debug_output_flag == 1) 
		{print("Presampling done!");}
	setprop(lw~"tmp/presampling-status", "finished");
	return;
	}

terrain_presampling(blat, blon, n, size, alpha);

settimer( func {terrain_presampling_loop(blat, blon, nc-n_out, size, alpha) },0);
}


###########################################################
# terrain presampling routine
###########################################################

var terrain_presampling = func (blat, blon, ntries, size, alpha) {

var phi = alpha * math.pi/180.0;
var elevation = 0.0;

var lat_vec = [];
var lon_vec = [];
var lat_lon_vec = [];


for (var i=0; i<ntries; i=i+1)
	{
	var x = (2.0 * rand() - 1.0) * size;
	var y = (2.0 * rand() - 1.0) * size; 
	
	append(lat_vec, blat + (y * math.cos(phi) - x * math.sin(phi)) * m_to_lat);
	append(lon_vec, blon + (x * math.cos(phi) + y * math.sin(phi)) * m_to_lon);
	}
	
	
var elevation_vec = compat_layer.get_elevation_array(lat_vec, lon_vec);
	
	
for (var i=0; i<ntries;i=i+1)
	{
	for(var j=0;j<30;j=j+1)
		{
		if ((elevation_vec[i] != -1.0) and (elevation_vec[i] < 500.0 * (j+1))) 
			{terrain_n[j] = terrain_n[j]+1;  break;}
		}
		
	}



}

###########################################################
# terrain presampling analysis
###########################################################

var terrain_presampling_analysis = func {

if ((compat_layer.features.terrain_presampling_active == 0) or (getprop(lw~"tiles/tile-counter") == 0))
	{
	var sum = 0;
	var alt_mean = 0;
	var alt_med = 0;
	var alt_20 = 0;
	var alt_min = 0;
	var alt_low_min = 0;


	for (var i=0; i<40;i=i+1)
		{sum = sum + terrain_n[i];}

	var n_tot = sum;

	sum = 0;
	for (var i=0; i<40;i=i+1)
		{
		sum = sum + terrain_n[i];
		if (sum > int(0.5 *n_tot)) {alt_med = i * 500.0; break;}		
		}

	sum = 0;
	for (var i=0; i<40;i=i+1)
		{
		sum = sum + terrain_n[i];
		if (sum > int(0.3 *n_tot)) {alt_20 = i * 500.0; break;}		
		}


	for (var i=0; i<40;i=i+1) {alt_mean = alt_mean + terrain_n[i] * i * 500.0;}
	alt_mean = alt_mean/n_tot;

	for (var i=0; i<40;i=i+1) {if (terrain_n[i] > 0) {alt_min = i * 500.0; break;}}

	var n_max = 0;
	sum = 0;

	for (var i=0; i<39;i=i+1) 
		{
		sum = sum + terrain_n[i];
		if (terrain_n[i] > n_max) {n_max = terrain_n[i];}
		if ((n_max > terrain_n[i+1]) and (sum > int(0.3*n_tot)))
 			{alt_low_min = i * 500; break;}
		}
	}
else
	{
#	print("Hard-coded sampling...");
	var n_tot = getprop("/environment/terrain/area[0]/input/max-samples");
	var alt_mean = getprop("/environment/terrain/area[0]/output/alt-mean-ft");
	var alt_med = getprop("/environment/terrain/area[0]/output/alt-median-ft");
	var alt_min = getprop("/environment/terrain/area[0]/output/alt-min-ft");
	var alt_20 = getprop("/environment/terrain/area[0]/output/alt-offset-ft");
	}

if (debug_output_flag == 1) 
	{print("Terrain presampling analysis results:");
	print("total: ",n_tot," mean: ",alt_mean," median: ",alt_med," min: ",alt_min, " alt_20: ", alt_20);}



setprop(lw~"tmp/tile-alt-offset-ft",alt_20);
setprop(lw~"tmp/tile-alt-median-ft",alt_med);
setprop(lw~"tmp/tile-alt-min-ft",alt_min);
setprop(lw~"tmp/tile-alt-mean-ft",alt_mean);
setprop(lw~"tmp/tile-alt-layered-ft",0.5 * (alt_min + alt_20));

append(alt_50_array, alt_med);
append(alt_20_array, alt_20); 
append(alt_min_array, alt_min);
append(alt_mean_array, alt_mean);


current_mean_alt = 0.5 * (current_mean_alt + alt_20);


}



###########################################################
# wave conditions search
###########################################################

var wave_detection_loop = func (blat, blon, nx, alpha) {

if (local_weather_running_flag == 0) {return;}

var phi = alpha * math.pi/180.0;
var elevation = 0.0;
var ny = 20;


for (var i=0; i<ny; i=i+1)
	{
	var x = 5000.0;
	var y = -20000.0 + i * 2000.0;
	
	var lat = blat + (y * math.cos(phi) - x * math.sin(phi)) * m_to_lat;
	var lon = blon + (x * math.cos(phi) + y * math.sin(phi)) * m_to_lon;

	elevation = compat_layer.get_elevation(lat, lon);

	print(elevation);	

	}


}

###########################################################
# detailed altitude determination for convective calls
# clouds follow the terrain to some degree, but not excessively so
###########################################################

var get_convective_altitude = func (balt, elevation, tile_index, grad) {


var alt_offset = alt_20_array[tile_index - 1];
var alt_median = alt_50_array[tile_index - 1];

# get the maximal shift
var alt_variation = alt_median - alt_offset;

# always get some amount of leeway
if (alt_variation < 500.0) {alt_variation = 500.0;}

# get the correction to the maximal shift by detailed terrain

if (detailed_terrain_interaction_flag == 1)
	{
	var gradfact = get_gradient_factor(grad);
	
	if ((local_weather.wind_model_flag == 1) or (local_weather.wind_model_flag == 3))
		{
		var windspeed = tile_wind_speed[0];
		}
	else if ((local_weather.wind_model_flag ==2) or (local_weather.wind_model_flag == 4) or (local_weather.wind_model_flag == 5))
		{
		var windspeed = tile_wind_speed[tile_index-1];
		}

	var gradfact = ((gradfact - 1.0)  * windspeed) + 1.0;
	#print("gradfact: ", gradfact);
	}
else
	{
	var gradfact = 1.0;
	}

var alt_variation = alt_variation * gradfact;

# get the difference between offset and foot point
var alt_diff = elevation - alt_offset;

# now get the elevation-induced shift

var fraction = alt_diff / alt_variation;

if (fraction > 1.0) {fraction = 1.0;} # no placement above maximum shift
if (fraction < 0.0) {fraction = 0.0;} # no downward shift

# get the cloud base

var cloudbase = balt - alt_offset;

var alt_above_terrain = balt - elevation;

# the shift strength is weakened if the layer is high above base elevation
# the reference altitude is 1000 ft, anything higher has less sensitivity to terrain

var shift_strength = 1000.0/alt_above_terrain; 

if (shift_strength > 1.0) {shift_strength = 1.0;} # no enhancement for very low layers 
if (shift_strength < 0.0) {shift_strength = 1.0;} # this shouldn't happen, but just in case...

if (alt_diff > alt_variation) {alt_diff = alt_variation;} # maximal shift is given by alt_variation

# print("balt: ", balt, " new alt: ", balt + shift_strength * alt_diff * fraction);

return balt + shift_strength * alt_diff * fraction;

}


###########################################################
# detailed terrain gradient determination in wind direction
###########################################################


var get_terrain_gradient = func (lat, lon, elevation1, phi, dist) {


# get the first elevation
# var elevation1 = compat_layer.get_elevation(lat,lon);

# look <dist> upwind to learn about the history of the cloud
var elevation2 = compat_layer.get_elevation(lat+weather_tiles.get_lat(0.0,dist,phi), lon+weather_tiles.get_lon(0.0,dist,phi));

return (elevation2 - elevation1)/(dist * m_to_ft);
}

###########################################################
# enhancement of the placement altitude due to terrain
###########################################################

var get_gradient_factor = func (grad) {

if (grad > 0.0)
	{return 1.0;}
else
	{
	return 1.0 -2.0 * grad;
	}
}


###########################################################
# suppression of placement in lee terrain
###########################################################

var get_lee_bias = func (grad, tile_index) {


if ((local_weather.wind_model_flag == 1) or (local_weather.wind_model_flag == 3))
		{
		var windspeed = tile_wind_speed[0];
		}
	else if ((local_weather.wind_model_flag ==2) or (local_weather.wind_model_flag == 4) or (local_weather.wind_model_flag == 5))
		{
		var windspeed = tile_wind_speed[tile_index-1];
		}


if (grad < 0.0)
	{return 1.0;}
else
	{
	var lee_bias = 1.0 - (grad * 0.2 * windspeed);
	}
if (lee_bias < 0.2) {lee_bias = 0.2;}

return lee_bias;
}

###########################################################
# enhancement of Cumulus in above average altitude
###########################################################


var get_terrain_altitude_factor = func (tile_index, balt, elevation) {


var alt_mean = alt_mean_array[tile_index -1];
var alt_base = alt_20_array[tile_index -1];

var alt_layer = balt - alt_base;
var alt_above_terrain = balt - elevation;
var alt_above_mean = balt - alt_mean;

# the cloud may still be above terrain even if the layer altitude is negative, but we want to avoid neg. factors here

if (alt_above_terrain < 0.0) {alt_above_terrain = 0.0;}

var norm_alt_diff = (alt_above_mean - alt_above_terrain)/alt_layer;

if (norm_alt_diff > 0.0)
		{
		var terrain_altitude_factor = 1.0 + 2.0 * norm_alt_diff;
		}
	else
		{
		var terrain_altitude_factor = 1.0/(1.0 - 5.0 * norm_alt_diff);
		}

if (terrain_altitude_factor > 3.0) {terrain_altitude_factor = 3.0;}
if (terrain_altitude_factor < 0.1) {terrain_altitude_factor = 0.1;}

return terrain_altitude_factor;
}


var get_terrain_strength_factor = func (terrain_altitude_factor) {

return  1.0+ (0.5 * (terrain_altitude_factor-1.0));

}


###########################################################
# terrain presampling listener dispatcher
###########################################################

var manage_presampling = func {



var status = getprop(lw~"tmp/presampling-status");


# we only take action when the analysis is done
if (status != "finished") {return;} 

if (getprop(lw~"tiles/tile-counter") == 0) # we deal with a tile setup call from the menu
	{
	set_tile();
	}
else	# the tile setup call came from weather_tile_management
	{
	var lat = getprop(lw~"tiles/tmp/latitude-deg");
	var lon = getprop(lw~"tiles/tmp/longitude-deg");
	var code = getprop(lw~"tiles/tmp/code");
	var dir_index = getprop(lw~"tiles/tmp/dir-index");	

	weather_tile_management.generate_tile(code, lat, lon, dir_index);
	}


# set status to idle again

setprop(lw~"tmp/presampling-status", "idle");

}


###########################################################
# hardcoded terrain presampling listener dispatcher
###########################################################

var manage_hardcoded_presampling = func {

var status = getprop("/environment/terrain/area[0]/enabled");

print("Hard-coded terrain presampling status: ", status);

# no action unless the sampler has finished
if (status ==0) {return;}

# no action if the sampler hasn't been started

if (getprop(lw~"tmp/presampling-status") != "sampling") {return;}

terrain_presampling_analysis();
if (debug_output_flag == 1) 
		{print("Presampling done!");}
setprop(lw~"tmp/presampling-status", "finished");


}

###########################################################
# set wind model flag
###########################################################

var set_wind_model_flag = func {

var wind_model = getprop(lw~"config/wind-model");

if (wind_model == "constant") {wind_model_flag = 1;}
else if (wind_model == "constant in tile") {wind_model_flag =2;}
else if (wind_model == "aloft interpolated") {wind_model_flag =3; }
else if (wind_model == "airmass interpolated") {wind_model_flag =4;}
else if (wind_model == "aloft waypoints") {wind_model_flag =5;}
else {print("Wind model not implemented!"); wind_model_flag =1;}


}


###########################################################
# set texture mix for convective clouds
###########################################################

var set_texture_mix = func {

var thermal_properties = getprop(lw~"config/thermal-properties");
thermal_conditions = thermal_properties;

convective_texture_mix = -(thermal_properties - 1.0) * 0.4;

if (convective_texture_mix < -0.2) {convective_texture_mix = -0.2;}
if (convective_texture_mix > 0.2) {convective_texture_mix = 0.2;}

lowest_layer_turbulence = 0.7 - thermal_properties;
if (lowest_layer_turbulence < 0.0) {lowest_layer_turbulence = 0.0;}
}

###########################################################
# create an effect volume
###########################################################

var create_effect_volume = func (geometry, lat, lon, r1, r2, phi, alt_low, alt_high, vis, rain, snow, turb, lift, lift_flag, sat) {


var ev = effectVolume.new (geometry, lat, lon, r1, r2, phi, alt_low, alt_high, vis, rain, snow, turb, lift, lift_flag, sat);
ev.index = getprop(lw~"tiles/tile-counter");
ev.active_flag = 0;


if (vis < 0.0) {ev.vis_flag = 0;} else {ev.vis_flag = 1;}
if (rain < 0.0) {ev.rain_flag = 0;} else {ev.rain_flag = 1;}
if (snow < 0.0) {ev.snow_flag = 0;} else {ev.snow_flag = 1;}
if (turb < 0.0) {ev.turb_flag = 0;} else {ev.turb_flag = 1;}
if (lift_flag ==  0.0) {ev.lift_flag = 0;} else {ev.lift_flag = 1;}
if (sat < 0.0) {ev.sat_flag = 0;} else {ev.sat_flag = 1;}
if (sat > 1.0) {sat = 1.0;}

if (lift_flag == -2) # we create a thermal by function
	{
	ev.lift_flag = 2;
	ev.radius = 0.8 * r1;
	ev.height = alt_high * 0.87;
	ev.cn = 0.7 + rand() * 0.2;
	ev.sh = 0.7 + rand() * 0.2;
	ev.max_lift = lift;
	ev.f_lift_radius = 0.7 + rand() * 0.2;
	if (dynamics_flag == 1) # globals set by the convective system
		{
		ev.flt = cloud_fractional_lifetime;
		ev.evolution_timestamp = cloud_evolution_timestamp;
		}
	}

if (lift_flag == -3) # we create a wave lift
	{
	ev.lift_flag = 3;
	ev.height = 10000.0; # scale height in ft
	ev.max_lift = lift;
	ev.index = 0; # static objects are assigned tile id zero
	}

# set a timestamp if needed

if (dynamics_flag == 1)
	{
	ev.timestamp = weather_dynamics.time_lw;
	}

# and add to the counter
setprop(lw~"effect-volumes/number",getprop(lw~"effect-volumes/number")+1);

append(effectVolumeArray,ev);
}





###########################################################
# set a weather station for interpolation
###########################################################

var set_weather_station = func (lat, lon, alt, vis, T, D, p) {

var s = weatherStation.new (lat, lon, alt, vis, T, D, p);
s.index = getprop(lw~"tiles/tile-counter");
s.weight = 0.02;

# set a timestamp if needed

if (dynamics_flag == 1)
	{
	s.timestamp = weather_dynamics.time_lw;
	}
append(weatherStationArray,s);

}


###########################################################
# set an atmosphere condition point for interpolation
###########################################################

var set_atmosphere_ipoint = func (lat, lon, vis_aloft, vis_alt1, vis_ovcst, ovcst,ovcst_alt_low, ovcst_alt_high, scatt, scatt_alt_low, scatt_alt_high) {

var a = atmosphereIpoint.new (lat, lon, vis_aloft, vis_alt1, vis_ovcst, ovcst, ovcst_alt_low, ovcst_alt_high, scatt, scatt_alt_low, scatt_alt_high);
a.index = getprop(lw~"tiles/tile-counter");
a.weight = 0.02;

# set a timestamp if needed

if (dynamics_flag == 1)
	{
	a.timestamp = weather_dynamics.time_lw;
	}
append(atmosphereIpointArray,a);

}


###########################################################
# set a wind interpolation point
###########################################################

var set_wind_ipoint = func (lat, lon, d0, v0, d1, v1, d2, v2, d3, v3, d4, v4, d5, v5, d6, v6, d7, v7, d8, v8) {

var w = windIpoint.new(lat, lon, d0, v0, d1, v1, d2, v2, d3, v3, d4, v4, d5, v5, d6, v6, d7, v7, d8, v8);

append(windIpointArray, w);


}


###########################################################
# set a wind interpolation point from ground METAR data
###########################################################

var set_wind_ipoint_metar = func (lat, lon, d0, v0) {

# insert a plausible pattern of aloft winds based on ground info


# direction of Coriolis deflection depends on hemisphere
if (lat >0.0) {var dsign = -1.0;} else {var dsign = 1.0;} 


var v1 = v0 * (1.0 + rand() * 0.1);
var d1 = d0 + dsign * 2.0 * rand();

var v2 = v0 * (1.2 + rand() * 0.2);
var d2 = d0 + dsign * (3.0 * rand() + 2.0);

var v3 = v0 * (1.3 + rand() * 0.4) + 5.0;
var d3 = d0 + dsign * (3.0 * rand()  + 4.0);

var v4 = v0 * (1.7 + rand() * 0.5) + 10.0;
var d4 = d0 + dsign * (4.0 * rand()  + 8.0);

var v5 = v0 * (1.7 + rand() * 0.5) + 20.0;
var d5 = d0 + dsign * (4.0 * rand() +  10.0);

var v6 = v0 * (1.7 + rand() * 0.5) + 40.0;
var d6 = d0 + dsign * (4.0 * rand() +  12.0);

var v7 = v0 * (2.0 + rand() * 0.7) + 50.0;
var d7 = d0 + dsign * (4.0 * rand() +  13.0);

var v8 = v0 * (2.0 + rand() * 0.7) + 55.0;;
var d8 = d0 + dsign * (5.0 * rand() +  14.0);

var w = windIpoint.new(lat, lon, d0, v0, d1, v1, d2, v2, d3, v3, d4, v4, d5, v5, d6, v6, d7, v7, d8, v8);

append(windIpointArray, w);



}

###########################################################
# helper to show additional dialogs
###########################################################

var showDialog = func (name) {

fgcommand("dialog-show", props.Node.new({"dialog-name":name}));

}


###########################################################
# helper to transfer configuration flags in menu to Nasal
###########################################################

var readFlags = func {

# thermal lift must be 1 for constant thermals (obsolete), 2 for thermals by model (menu default)
# and 3 for blue thermals (set internally inside the tile only)

if (getprop(lw~"config/generate-thermal-lift-flag") ==1) {generate_thermal_lift_flag = 2;}
	else {generate_thermal_lift_flag = 0};

thread_flag = getprop(lw~"config/thread-flag");
# dynamics_flag = getprop(lw~"config/dynamics-flag");
presampling_flag = getprop(lw~"config/presampling-flag");
detailed_clouds_flag = getprop(lw~"config/detailed-clouds-flag");
dynamical_convection_flag = getprop(lw~"config/dynamical-convection-flag");
debug_output_flag = getprop(lw~"config/debug-output-flag");
fps_control_flag = getprop(lw~"config/fps-control-flag");
realistic_visibility_flag = getprop(lw~"config/realistic-visibility-flag");
detailed_terrain_interaction_flag = getprop(lw~"config/detailed-terrain-interaction-flag");
scattering_shader_flag = getprop("/sim/rendering/shaders/skydome");

# also initialize menu entries

air_pollution_norm = getprop("/environment/air-pollution-norm");

}

###########################################################
# wrappers to call functions from the local weather menu bar 
###########################################################

var streak_wrapper = func {

thread_flag = 0;
dynamics_flag = 0;
presampling_flag = 0;

var array = [];
append(weather_tile_management.modelArrays,array);
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);

var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
var type = getprop("/local-weather/tmp/cloud-type");
var alt = getprop("/local-weather/tmp/alt");
var nx = getprop("/local-weather/tmp/nx");
var xoffset = getprop("/local-weather/tmp/xoffset");
var xedge = getprop("/local-weather/tmp/xedge");
var ny = getprop("/local-weather/tmp/ny");
var yoffset = getprop("/local-weather/tmp/yoffset");
var yedge = getprop("/local-weather/tmp/yedge");
var dir = getprop("/local-weather/tmp/dir");
var tri = getprop("/local-weather/tmp/tri");
var rnd_alt = getprop("/local-weather/tmp/rnd-alt");
var rnd_pos_x = getprop("/local-weather/tmp/rnd-pos-x");
var rnd_pos_y = getprop("/local-weather/tmp/rnd-pos-y");

create_streak(type,lat,lon,alt,rnd_alt,nx,xoffset,xedge,rnd_pos_x,ny,yoffset,yedge,rnd_pos_y,dir,tri);
}


var convection_wrapper = func {

thread_flag = 0;
dynamics_flag = 0;
presampling_flag = 0;


var array = [];
append(weather_tile_management.modelArrays,array);
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);

var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
var alt = getprop("/local-weather/tmp/conv-alt");
var size = getprop("/local-weather/tmp/conv-size");
var strength = getprop("/local-weather/tmp/conv-strength");

var n = int(10 * size * size * strength);
create_cumosys(lat,lon,alt,n, size*1000.0);

}

var barrier_wrapper = func {


thread_flag = 0;
dynamics_flag = 0;
presampling_flag = 0;


var array = [];
append(weather_tile_management.modelArrays,array);
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);

var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
var alt = getprop("/local-weather/tmp/bar-alt");
var n = getprop("/local-weather/tmp/bar-n");
var dir = getprop("/local-weather/tmp/bar-dir");
var dist = getprop("/local-weather/tmp/bar-dist") * 1000.0;
var size = getprop("/local-weather/tmp/bar-size") * 1000.0;

create_rise_clouds(lat, lon, alt, n, size, dir, dist);

}

var single_cloud_wrapper = func {

thread_flag = 0;
dynamics_flag = 0;
presampling_flag = 0;



var array = [];
append(weather_tile_management.modelArrays,array);
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);

var type = getprop("/local-weather/tmp/scloud-type");
var subtype = getprop("/local-weather/tmp/scloud-subtype");
var lat = getprop("/local-weather/tmp/scloud-lat");
var lon = getprop("/local-weather/tmp/scloud-lon");
var alt = getprop("/local-weather/tmp/scloud-alt");
var heading = getprop("/local-weather/tmp/scloud-dir");

var path = select_cloud_model(type,subtype);

compat_layer.create_cloud(path, lat, lon, alt, heading);

}

var layer_wrapper = func {

thread_flag = 0;
dynamics_flag = 0;
presampling_flag = 0;


var array = [];
append(weather_tile_management.modelArrays,array);
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);

var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
var type = getprop(lw~"tmp/layer-type");
var rx = getprop(lw~"tmp/layer-rx") * 1000.0;
var ry = getprop(lw~"tmp/layer-ry") * 1000.0;
var phi = getprop(lw~"tmp/layer-phi");
var alt = getprop(lw~"tmp/layer-alt");
var thick = getprop(lw~"tmp/layer-thickness");
var density = getprop(lw~"tmp/layer-density");
var edge = getprop(lw~"tmp/layer-edge");
var rain_flag = getprop(lw~"tmp/layer-rain-flag");
var rain_density = getprop(lw~"tmp/layer-rain-density");

create_layer(type, lat, lon, alt, thick, rx, ry, phi, density, edge, rain_flag, rain_density);

}

var box_wrapper = func {

thread_flag = 0;
dynamics_flag = 0;
presampling_flag = 0;


setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);

var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
var alt = getprop("position/altitude-ft");
var x = getprop(lw~"tmp/box-x-m");
var y = getprop(lw~"tmp/box-y-m");
var z = getprop(lw~"tmp/box-alt-ft");
var n = getprop(lw~"tmp/box-n");
var f_core = getprop(lw~"tmp/box-core-fraction");
var r_core = getprop(lw~"tmp/box-core-offset");
var h_core = getprop(lw~"tmp/box-core-height");
var n_core = getprop(lw~"tmp/box-core-n");
var f_bottom = getprop(lw~"tmp/box-bottom-fraction");
var h_bottom = getprop(lw~"tmp/box-bottom-thickness");
var n_bottom = getprop(lw~"tmp/box-bottom-n");

var type = "Box_test";



create_cloudbox(type, lat, lon, alt, x,y,z,n, f_core, r_core, h_core, n_core, f_bottom, h_bottom, n_bottom);

}


var set_aloft_wrapper = func {



var lat = getprop(lw~"tmp/ipoint-latitude-deg");
var lon = getprop(lw~"tmp/ipoint-longitude-deg");

var d0 = getprop(lw~"tmp/FL0-wind-from-heading-deg");
var v0 = getprop(lw~"tmp/FL0-windspeed-kt");

var d1 = getprop(lw~"tmp/FL50-wind-from-heading-deg");
var v1 = getprop(lw~"tmp/FL50-windspeed-kt");

var d2 = getprop(lw~"tmp/FL100-wind-from-heading-deg");
var v2 = getprop(lw~"tmp/FL100-windspeed-kt");

var d3 = getprop(lw~"tmp/FL180-wind-from-heading-deg");
var v3 = getprop(lw~"tmp/FL180-windspeed-kt");

var d4 = getprop(lw~"tmp/FL240-wind-from-heading-deg");
var v4 = getprop(lw~"tmp/FL240-windspeed-kt");

var d5 = getprop(lw~"tmp/FL300-wind-from-heading-deg");
var v5 = getprop(lw~"tmp/FL300-windspeed-kt");

var d6 = getprop(lw~"tmp/FL340-wind-from-heading-deg");
var v6 = getprop(lw~"tmp/FL340-windspeed-kt");

var d7 = getprop(lw~"tmp/FL390-wind-from-heading-deg");
var v7 = getprop(lw~"tmp/FL390-windspeed-kt");

var d8 = getprop(lw~"tmp/FL450-wind-from-heading-deg");
var v8 = getprop(lw~"tmp/FL450-windspeed-kt");

set_wind_ipoint(lat, lon, d0, v0, d1, v1, d2, v2, d3, v3, d4, v4, d5, v5, d6, v6, d7, v7, d8, v8);

if (wind_model_flag == 5)
{setprop(lwi~"ipoint-number", getprop(lwi~"ipoint-number") + 1);}

}

####################################
# tile setup call wrapper
####################################

var set_tile = func {

# check if another instance of local weather is running already


if (local_weather_running_flag == 1)
	{
	setprop("/sim/messages/pilot", "Local weather: Local weather is already running, use Clear/End before restarting. Aborting...");
	return;
	}

local_weather_startup_flag = 1;

# randomize high ice scattering properties

setprop("/environment/scattering-phenomena/ring-factor", rand());
setprop("/environment/scattering-phenomena/rainbow-factor", rand());


var type = getprop("/local-weather/tmp/tile-type");

# set tile center coordinates to current position

var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");

setprop(lw~"tiles/tmp/latitude-deg",lat);
setprop(lw~"tiles/tmp/longitude-deg",lon);
setprop(lw~"tiles/tmp/dir-index",4);

readFlags();

# check consistency of flags

if (dynamical_convection_flag == 1)
	{
	if (dynamics_flag == 0) 
		{
		print("Dynamical convection needs weather dynamics to run! Aborting..."); 
		setprop("/sim/messages/pilot", "Local weather: dynamical convection needs weather dynamics to run! Aborting...");
		return;
		}
	if (presampling_flag == 0) 
		{
		print("Dynamical convection needs terrain presampling to run! Aborting..."); 
		setprop("/sim/messages/pilot", "Local weather: dynamical convection needs terrain presampling to run! Aborting...");
		return;
		}
	}

if (detailed_terrain_interaction_flag == 1)
	{
	if (presampling_flag == 0)
		{
		print("Terrain effect needs terrain presampling to run! Aborting..."); 
		setprop("/sim/messages/pilot", "Local weather: terrain effect needs terrain presampling to run! Aborting...");
		return;
		}
	}


# if we can do so, we switch global weather and METAR parsing in environment off at this point

if (compat_layer.features.can_disable_environment ==1)
	{
	props.globals.getNode("/environment/config/enabled").setBoolValue(0);
	props.globals.getNode("/environment/params/metar-updates-environment").setBoolValue(0);
	}


# switch off normal 3d clouds

local_weather.setDefaultCloudsOff();

# read max. visibility range and set far camera clipping 

max_vis_range = math.exp(getprop(lw~"config/aux-max-vis-range-m")); 
setprop(lw~"config/max-vis-range-m",max_vis_range); 
if (max_vis_range>120000.0){setprop("/sim/rendering/camera-group/zfar",max_vis_range);}

# now see if we need to presample the terrain

if ((presampling_flag == 1) and (getprop(lw~"tmp/presampling-status") == "idle")) 
	{
	terrain_presampling_start(lat, lon, 1000, 40000, getprop(lw~"tmp/tile-orientation-deg")); 
	return;
	}


# indicate that we're up and running

local_weather_startup_flag = 0;
local_weather_running_flag = 1;

# see if we use METAR for weather setup

if ((getprop("/environment/metar/valid") == 1) and (getprop(lw~"tmp/tile-management") == "METAR"))
	{
	type = "METAR";
	metar_flag = 1;	
	
	setprop(lw~"METAR/station-id","METAR");

	
	
	}
else if ((getprop("/environment/metar/valid") == 0) and (getprop(lw~"tmp/tile-management") == "METAR"))
	{
	print("No METAR available, aborting...");
	setprop("/sim/messages/pilot", "Local weather: No METAR available! Aborting...");
	return;
	}


# see if we need to create an aloft wind interpolation structure

set_wind_model_flag();


if ((wind_model_flag == 3) or ((wind_model_flag ==5) and (getprop(lwi~"ipoint-number") == 0))) 
	{
	if (metar_flag != 1)
		{set_aloft_wrapper();}
	}


# prepare the first tile wind field

if (metar_flag == 1) # the winds from current METAR are used
	{

	# METAR reports ground winds, we want to set aloft, so we need to compute the local boundary layer
	# need to set the tile index for this
	setprop(lw~"tiles/tile[4]/tile-index",1);

	var boundary_correction = 1.0/get_slowdown_fraction();
	var metar_base_wind_deg = getprop("environment/metar/base-wind-dir-deg");
	var metar_base_wind_speed = boundary_correction * getprop("environment/metar/base-wind-speed-kt");

	# set the wind hash for the new scheme
	
	wind.cloudlayer = [metar_base_wind_deg,metar_base_wind_speed];
	wind.surface = [metar_base_wind_deg,metar_base_wind_speed/boundary_correction];
	wind.current = wind.surface;


	if ((wind_model_flag == 1) or (wind_model_flag == 2))
		{
		append(weather_dynamics.tile_wind_direction, metar_base_wind_deg);
		append(weather_dynamics.tile_wind_speed, metar_base_wind_speed);
		setprop(lw~"tmp/tile-orientation-deg",metar_base_wind_deg);
		}
	else if (wind_model_flag == 5) 
		{
		var station_lat = getprop("/environment/metar/station-latitude-deg");
		var station_lon = getprop("/environment/metar/station-longitude-deg");

		set_wind_ipoint_metar(station_lat, station_lon, metar_base_wind_deg, metar_base_wind_speed);

		var res = wind_interpolation(lat,lon,0.0);



		append(weather_dynamics.tile_wind_direction,res[0]);
		append(weather_dynamics.tile_wind_speed,res[1]);
		setprop(lw~"tmp/tile-orientation-deg", weather_dynamics.tile_wind_direction[0]);

		# in case of gusty winds, these need to be re-initialized to the base wind
		# from METAR rather than the menu
		interpolated_conditions.wind_from_heading_deg = metar_base_wind_deg;
		interpolated_conditions.windspeed_kt = metar_base_wind_speed;
		}
	else
		{
		print("Wind model currently not supported with live data!");
		setprop("/sim/messages/pilot", "Local weather: Wind model currently not supported with live data! Aborting...");
		return;
		}
	}
else
	{
	setprop(lw~"tiles/tile[4]/tile-index",1);
	var boundary_correction = get_slowdown_fraction();

	if (wind_model_flag == 5) # it needs to be interpolated
		{
		var res = wind_interpolation(lat,lon,0.0);

		append(weather_dynamics.tile_wind_direction,res[0]);
		append(weather_dynamics.tile_wind_speed,res[1]);

		# set the wind hash for the new scheme
	
		wind.surface = [res[0],res[1] * boundary_correction];
		wind.cloudlayer = res;
		wind.current = wind.surface;


		}
	else if (wind_model_flag == 3) # it comes from a different menu
		{
		append(weather_dynamics.tile_wind_direction, getprop(lw~"tmp/FL0-wind-from-heading-deg"));
		append(weather_dynamics.tile_wind_speed, getprop(lw~"tmp/FL0-windspeed-kt"));
		
		# set the wind hash for the new scheme
		wind.cloudlayer = [getprop(lw~"tmp/FL0-wind-from-heading-deg"),getprop(lw~"tmp/FL0-windspeed-kt") ];
		wind.surface = [wind.cloudlayer[0],wind.cloudlayer[1] * boundary_correction];
		wind.current = wind.surface;

		}
	else # it comes from the standard menu
		{
		append(weather_dynamics.tile_wind_direction, getprop(lw~"tmp/tile-orientation-deg"));
		append(weather_dynamics.tile_wind_speed, getprop(lw~"tmp/windspeed-kt"));

		# set the wind hash for the new scheme
		wind.cloudlayer = [getprop(lw~"tmp/tile-orientation-deg"),getprop(lw~"tmp/windspeed-kt")];
		wind.surface = [wind.cloudlayer[0],wind.cloudlayer[1] * boundary_correction];
		wind.current = wind.surface;

		}

	# when the aloft wind menu is used, the lowest winds should be taken from there
	# so we need to overwrite the setting from the tile generating menu in this case
	# otherwise the wrong orientation is built


	if (wind_model_flag ==3)
		{
		setprop(lw~"tmp/tile-orientation-deg", getprop(lw~"tmp/FL0-wind-from-heading-deg"));
		}
	else if (wind_model_flag == 5) 
		{
		setprop(lw~"tmp/tile-orientation-deg", weather_dynamics.tile_wind_direction[0]);
		}
}

# create all the neighbouring tile coordinate sets

weather_tile_management.create_neighbours(lat,lon,getprop(lw~"tmp/tile-orientation-deg"));




setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);


# see if we need to generate a quadtree structure for clouds 

if (dynamics_flag ==1)
	{
	var quadtree = [];
	weather_dynamics.generate_quadtree_structure(0, quadtree);
	append(weather_dynamics.cloudQuadtrees,quadtree);
	}


	

if (type == "High-pressure-core")
	{weather_tiles.set_high_pressure_core_tile();}
else if (type == "High-pressure")
	{weather_tiles.set_high_pressure_tile();}
else if (type == "High-pressure-border")
	{weather_tiles.set_high_pressure_border_tile();}
else if (type == "Low-pressure-border")
	{weather_tiles.set_low_pressure_border_tile();}
else if (type == "Low-pressure")
	{weather_tiles.set_low_pressure_tile();}
else if (type == "Low-pressure-core")
	{weather_tiles.set_low_pressure_core_tile();}
else if (type == "Cold-sector")
	{weather_tiles.set_cold_sector_tile();}
else if (type == "Warm-sector")
	{weather_tiles.set_warm_sector_tile();}
else if (type == "Tropical")
	{weather_tiles.set_tropical_weather_tile();}
else if (type == "Coldfront")
	{weather_tiles.set_coldfront_tile();}
else if (type == "Warmfront")
	{weather_tiles.set_warmfront1_tile();}
else if (type == "Warmfront-2")
	{weather_tiles.set_warmfront2_tile();}
else if (type == "Warmfront-3")
	{weather_tiles.set_warmfront3_tile();}
else if (type == "Warmfront-4")
	{weather_tiles.set_warmfront4_tile();}
else if (type == "Thunderstorms")
	{weather_tiles.set_thunderstorms_tile();}
else if (type == "METAR")
	{weather_tiles.set_METAR_tile();}
else if (type == "Altocumulus sky")
	{weather_tiles.set_altocumulus_tile();setprop(lw~"tiles/code","altocumulus_sky");}
else if (type == "Broken layers") 
	{weather_tiles.set_broken_layers_tile();setprop(lw~"tiles/code","broken_layers");}
else if (type == "Cold front")
	{weather_tiles.set_coldfront_tile();setprop(lw~"tiles/code","coldfront");}
else if (type == "Cirrus sky")
	{weather_tiles.set_cirrus_sky_tile();setprop(lw~"tiles/code","cirrus_sky");}
else if (type == "Fair weather")
	{setprop(lw~"tiles/code","cumulus_sky");weather_tiles.set_fair_weather_tile();}
else if (type == "Glider's sky")
	{setprop(lw~"tiles/code","gliders_sky");weather_tiles.set_gliders_sky_tile();}
else if (type == "Blue thermals")
	{setprop(lw~"tiles/code","blue_thermals");weather_tiles.set_blue_thermals_tile();}
else if (type == "Incoming rainfront")
	{weather_tiles.set_rainfront_tile();setprop(lw~"tiles/code","rainfront");}
else if (type == "8/8 stratus sky")
	{weather_tiles.set_overcast_stratus_tile();setprop(lw~"tiles/code","overcast_stratus");}
else if (type == "Test tile")
	{weather_tiles.set_4_8_stratus_tile();setprop(lw~"tiles/code","test");}
else if (type == "Summer rain")
	{weather_tiles.set_summer_rain_tile();setprop(lw~"tiles/code","summer_rain");}
else 
	{print("Tile not implemented.");setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")-1);return();}


# mark tile as active

append(weather_tile_management.active_tile_list,1);

# start tile management loop if needed

if (getprop(lw~"tmp/tile-management") != "single tile") {
	if (getprop(lw~"tile-loop-flag") == 0) 
	{
	setprop(lw~"tiles/tile[4]/code",getprop(lw~"tiles/code"));
	setprop(lw~"tile-loop-flag",1); 
	weather_tile_management.tile_management_loop();}
	}

# start the interpolation loop

if (getprop(lw~"interpolation-loop-flag") == 0) 
{setprop(lw~"interpolation-loop-flag",1); local_weather.interpolation_loop();}

# start the effect volume loop

if (getprop(lw~"effect-loop-flag") == 0) 
{setprop(lw~"effect-loop-flag",1); local_weather.effect_volume_loop(0,0);}

# start weather dynamics loops if needed

if (getprop(lw~"timing-loop-flag") == 0) 
	{setprop(lw~"timing-loop-flag",1); local_weather.timing_loop();}

if (dynamics_flag ==1)
	{
	

	if (getprop(lw~"dynamics-loop-flag") == 0) 
		{
		setprop(lw~"dynamics-loop-flag",1); 
		# weather_dynamics.quadtree_loop(); 
		weather_dynamics.weather_dynamics_loop(0,0);
		}
	if ((getprop(lw~"convective-loop-flag") == 0) and (getprop(lw~"config/dynamical-convection-flag") ==1))
		{
		setprop(lw~"convective-loop-flag",1); 
		weather_dynamics.convective_loop();
		}
	}




# and start the buffer loop and housekeeping loop if needed

if (buffer_flag == 1)
	{
	if (getprop(lw~"buffer-loop-flag") == 0) 
		{
		# setprop(lw~"buffer-loop-flag",1); weather_tile_management.buffer_loop(0);
		setprop(lw~"housekeeping-loop-flag",1); weather_tile_management.housekeeping_loop(0,0);
		}
	}

# start the sea color loop
local_weather.init_sea_colors();

# start the mask loop
#local_weather.init_mask();

# create impostors - this should only happen when sufficiently high in air
weather_tile_management.create_impostors();

# start the cloud shadow loop

local_weather.cloud_shadow_flag = getprop("/local-weather/config/generate-cloud-shadows");

if (local_weather.cloud_shadow_flag == 1)
	{
	setprop(lw~"shadow-loop-flag",1); 
	weather_tile_management.shadow_management_loop(0);
	}

#weather_tile_management.watchdog_loop();

# start thunderstorm management

setprop(lw~"thunderstorm-loop-flag",1);

local_weather.place_model_controlled("lightning", "Models/Weather/lightning_combined.xml", lat, lon, 0.0, 0.0, 0.0, 0.0);

local_weather.thunderstorm_management_loop();

}


#################################################
# Anything that needs to run at startup goes here
#################################################

var startup = func {
print("Loading local weather routines...");

# get local Cartesian geometry

var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
calc_geo(lat);


# copy weather properties at startup to local weather


interpolated_conditions.visibility_m = getprop(ec~"boundary/entry[0]/visibility-m");
interpolated_conditions.pressure_sea_level_inhg = getprop(ec~"boundary/entry[0]/pressure-sea-level-inhg");
interpolated_conditions.temperature_degc = getprop(ec~"boundary/entry[0]/temperature-degc");
interpolated_conditions.dewpoint_degc = getprop(ec~"boundary/entry[0]/dewpoint-degc");
interpolated_conditions.wind_from_heading_deg = getprop(ec~"boundary/entry[0]/wind-from-heading-deg");
interpolated_conditions.wind_speed_kt = getprop(ec~"boundary/entry[0]/wind-speed-kt");
interpolated_conditions.turbulence = getprop(ec~"boundary/entry[0]/turbulence/magnitude-norm");
interpolated_conditions.rain_norm = 0.0;
interpolated_conditions.snow_norm = 0.0;
interpolated_conditions.thermal_lift = 0.0;


# before interpolation starts, these are also initially current

setprop(lw~"current/visibility-m",interpolated_conditions.visibility_m);
setprop(lw~"current/rain-norm",0.0);
setprop(lw~"current/snow-norm",0.0);
setprop(lw~"current/thermal-lift", 0.0);
setprop(lw~"current/turbulence",interpolated_conditions.turbulence);


# create default properties for METAR system, should be overwritten by real-weather-fetch

setprop(lw~"METAR/latitude-deg",lat); 
setprop(lw~"METAR/longitude-deg",lon);
setprop(lw~"METAR/altitude-ft",0.0);
setprop(lw~"METAR/wind-direction-deg",0.0);
setprop(lw~"METAR/wind-strength-kt",10.0);
setprop(lw~"METAR/visibility-m",17000.0);
setprop(lw~"METAR/rain-norm",0.0);
setprop(lw~"METAR/snow-norm",0.0);
setprop(lw~"METAR/temperature-degc",10.0);
setprop(lw~"METAR/dewpoint-degc",7.0);
setprop(lw~"METAR/pressure-inhg",29.92);
setprop(lw~"METAR/thunderstorm-flag",0);
setprop(lw~"METAR/layer[0]/cover-oct",4);
setprop(lw~"METAR/layer[0]/alt-agl-ft", 3000.0);
setprop(lw~"METAR/layer[1]/cover-oct",0);
setprop(lw~"METAR/layer[1]/alt-agl-ft", 20000.0);
setprop(lw~"METAR/layer[2]/cover-oct",0);
setprop(lw~"METAR/layer[2]/alt-agl-ft", 20000.0);
setprop(lw~"METAR/layer[3]/cover-oct",0);
setprop(lw~"METAR/layer[3]/alt-agl-ft", 20000.0);
setprop(lw~"METAR/available-flag",1);




# set listeners

setlistener(lw~"tmp/thread-status", func {var s = size(clouds_path); compat_layer.create_cloud_array(s, clouds_path, clouds_lat, clouds_lon, clouds_alt, clouds_orientation);  });
setlistener(lw~"tmp/convective-status", func {var s = size(clouds_path); compat_layer.create_cloud_array(s, clouds_path, clouds_lat, clouds_lon, clouds_alt, clouds_orientation);  });
setlistener(lw~"tmp/effect-thread-status", func {var s = size(effects_geo);  effect_placement_loop(s); });
setlistener(lw~"tmp/presampling-status", func {manage_presampling(); });

#setlistener(lw~"config/wind-model", func {set_wind_model_flag();});
setlistener(lw~"config/thermal-properties", func {set_texture_mix();});

setlistener(lw~"config/clouds-in-dynamics-loop", func(n) {weather_dynamics.max_clouds_in_loop = int(n.getValue());});

setlistener(lw~"config/clouds-visible-range-m", func(n) {weather_tile_management.cloud_view_distance = n.getValue();});
setlistener(lw~"config/distance-to-load-tile-m", func(n) {setprop(lw~"config/distance-to-remove-tile-m",n.getValue() + 500.0);});

setlistener(lw~"config/fps-control-flag", func(n) {fps_control_flag = n.getValue();});
setlistener(lw~"config/target-framerate", func(n) {target_framerate = n.getValue();});

setlistener(lw~"config/small-scale-persistence", func(n) {weather_tiles.small_scale_persistence = n.getValue();});
setlistener(lw~"config/ground-haze-factor", func(n) {ground_haze_factor = n.getValue();});
setlistener(lw~"config/aux-max-vis-range-m", func(n) {
	max_vis_range = math.exp(n.getValue()); 
	setprop(lw~"config/max-vis-range-m",max_vis_range);
	if (max_vis_range>120000.0){setprop("/sim/rendering/camera-group/zfar",max_vis_range);}
	});


setlistener(lw~"config/temperature-offset-degc", func(n) {temperature_offset = n.getValue();});

setlistener("/environment/air-pollution-norm", func(n) {air_pollution_norm = n.getValue() ;});

setlistener("/sim/rendering/shaders/skydome", func(n) {scattering_shader_flag = n.getValue() ; if (scattering_shader_flag ==1) {setprop("/sim/rendering/minimum-sky-visibility",0.0);} else  {setprop("/sim/rendering/minimum-sky-visibility",1000.0);} });
}


#####################################################
# Standard test call (for development and debug only)
#####################################################

var test = func {

var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
var alt = getprop("position/altitude-ft");

# thread_flag = 0;
# dynamics_flag = 0;
# presampling_flag = 0;


#if (compat_layer.features.can_disable_environment ==1)
#	{
#	props.globals.getNode("/environment/config/enabled").setBoolValue(0);
#	props.globals.getNode("/environment/params/metar-updates-environment").setBoolValue(0);
#	}
#
#compat_layer.setDefaultCloudsOff();

#var array = [];
#append(weather_tile_management.modelArrays,array);
#setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);


#var pos = geo.aircraft_position();

debug.dump(geodinfo(lat, lon));



#var info = {};

#for (var i = 0; i< 100000; i=i+1)
#	{
#	info = geodinfo(lat, lon);
#	}


}



#################################################################
# object classes
#################################################################

var weatherStation = {
	new: func (lat, lon, alt, vis, T, D, p) {
	        var s = { parents: [weatherStation] };
		s.lat = lat;
		s.lon = lon;
		s.alt = alt;
		s.vis = vis;
		s.T = T;
		s.D = D;
		s.p = p;
		s.scattering = 0.8;
	        return s;
	},
	move: func {
		var windfield = weather_dynamics.get_windfield(me.index);
		var dt = weather_dynamics.time_lw - me.timestamp;
		me.lat = me.lat + windfield[1] * dt * local_weather.m_to_lat;
		me.lon = me.lon + windfield[0] * dt * local_weather.m_to_lon;
		me.timestamp = weather_dynamics.time_lw;
	},
};


var atmosphereIpoint = {
	new: func (lat, lon, vis_aloft, vis_alt1, vis_ovcst, ovcst, ovcst_alt_low, ovcst_alt_high, scatt, scatt_alt_low, scatt_alt_high){
		var a = { parents: [atmosphereIpoint] };
		a.lat = lat;
		a.lon = lon;
		a.vis_aloft = vis_aloft;
		a.vis_alt1 = vis_alt1;
		a.vis_ovcst = vis_ovcst;
		a.ovcst = ovcst;
		a.ovcst_alt_low = ovcst_alt_low;
		a.ovcst_alt_high = ovcst_alt_high;
		a.scatt = scatt;
		a.scatt_alt_low = scatt_alt_low;
		a.scatt_alt_high = scatt_alt_high;
		return a;
	},
	move: func {
		var windfield = weather_dynamics.get_windfield(me.index);
		var dt = weather_dynamics.time_lw - me.timestamp;
		me.lat = me.lat + windfield[1] * dt * local_weather.m_to_lat;
		me.lon = me.lon + windfield[0] * dt * local_weather.m_to_lon;
		me.timestamp = weather_dynamics.time_lw;
	},
};


var windIpoint = {
	new: func (lat, lon, d0, v0, d1, v1, d2, v2, d3, v3, d4, v4, d5, v5, d6, v6, d7, v7, d8, v8) {
	        var w = { parents: [windIpoint] };
		w.lat = lat;
		w.lon = lon;
		
		altvec = [];
		
		var wv = windVec.new(d0, v0);
		append(altvec,wv);

		wv = windVec.new(d1, v1);
		append(altvec, wv);

		wv = windVec.new(d2, v2);
		append(altvec, wv);

		wv = windVec.new(d3, v3);
		append(altvec, wv);

		wv = windVec.new(d4, v4);
		append(altvec, wv);

		wv = windVec.new(d5, v5);
		append(altvec, wv);

		wv = windVec.new(d6, v6);
		append(altvec, wv);

		wv = windVec.new(d7, v7);
		append(altvec, wv);

		wv = windVec.new(d8, v8);
		append(altvec, wv);
		
		w.alt = altvec;
		
		w.weight = 0.02;
	        return w;
	},
};

var windVec = {
	new: func (d, v) {
	var wv = { parents: [windVec] };
	wv.d = d;
	wv.v = v;
	return wv;
	},

};





var effectVolume = {
	new: func (geometry, lat, lon, r1, r2, phi, alt_low, alt_high, vis, rain, snow, turb, lift, lift_flag, sat) {
	        var e = { parents: [effectVolume] };
		e.geometry = geometry;
		e.lat = lat;
		e.lon = lon;
		e.r1 = r1;
		e.r2 = r2;
		e.phi = phi;
		e.alt_low = alt_low;
		e.alt_high = alt_high;
		e.vis = vis;
		e.rain = rain;
		e.snow = snow;
		e.turb = turb;
		e.lift = lift;
		e.lift_flag = lift_flag;
		e.sat = sat;
		return e;
	},
	move: func {
		var windfield = weather_dynamics.get_windfield(me.index);
		var dt = weather_dynamics.time_lw - me.timestamp;
		me.lat = me.lat + windfield[1] * dt * local_weather.m_to_lat;
		me.lon = me.lon + windfield[0] * dt * local_weather.m_to_lon;
		me.timestamp = weather_dynamics.time_lw;
	},
	correct_altitude: func {	
		var convective_alt = weather_dynamics.tile_convective_altitude[me.index-1] + alt_20_array[me.index-1];
		var elevation = compat_layer.get_elevation(me.lat, me.lon);
		me.alt_high = local_weather.get_convective_altitude(convective_alt, elevation, me.index,0.0) *1.15;
		me.height = me.alt_high * 0.87; 
	},
	correct_altitude_and_age: func {	
		var convective_alt = weather_dynamics.tile_convective_altitude[me.index-1] + local_weather.alt_20_array[me.index-1];
		var elevation = -1.0; var p_cover = 0.2;
		var info = geodinfo(me.lat, me.lon);
		if (info != nil) 
			{
			elevation = info[0] * local_weather.m_to_ft;
			if (info[1] != nil)
				{
         			var landcover = info[1].names[0];
	 			if (contains(landcover_map,landcover)) {p_cover = landcover_map[landcover];}
				else {p_cover = 0.2;}
				}	
			}
		me.alt_high = get_convective_altitude(convective_alt, elevation, me.index,0.0) * 1.15;
		me.height = me.alt_high * 0.87; 
		var current_lifetime = math.sqrt(p_cover)/math.sqrt(0.35) * weather_dynamics.cloud_convective_lifetime_s;
		var fractional_increase = (weather_dynamics.time_lw - me.evolution_timestamp)/current_lifetime;
		me.flt = me.flt + fractional_increase;
		me.evolution_timestamp = weather_dynamics.time_lw;
	},
	get_distance: func {
		var lat = getprop("position/latitude-deg");
		var lon = getprop("position/longitude-deg");
		return math.sqrt(calc_d_sq(lat, lon, me.lat, me.lon));	
	},
};


var thermalLift = {
	new: func (lat, lon, radius, height, cn, sh, max_lift, f_lift_radius) {
	        var l = { parents: [thermalLift] };
		l.lat = lat;
		l.lon = lon;
		l.radius = radius;
		l.height = height;
		l.cn = cn;
		l.sh = sh;
		l.max_lift = max_lift;
		l.f_lift_radius = f_lift_radius;
		return l;
	},
	move: func {
		var windfield = weather_dynamics.get_windfield(me.index);
		var dt = weather_dynamics.time_lw - me.timestamp;
		me.lat = me.lat + windfield[1] * dt * local_weather.m_to_lat;
		me.lon = me.lon + windfield[0] * dt * local_weather.m_to_lon;
		me.timestamp = weather_dynamics.time_lw;
	},
	correct_altitude: func {	
		var convective_alt = weather_dynamics.tile_convective_altitude[me.index-1] + alt_20_array[me.index-1];
		var elevation = compat_layer.get_elevation(me.lat, me.lon);
		me.height = local_weather.get_convective_altitude(convective_alt, elevation, me.index,0.0);
	},
	correct_altitude_and_age: func {	
		var convective_alt = weather_dynamics.tile_convective_altitude[me.index-1] + local_weather.alt_20_array[me.index-1];
		var elevation = -1.0; var p_cover = 0.2;
		var info = geodinfo(me.lat, me.lon);
		if (info != nil) 
			{
			elevation = info[0] * local_weather.m_to_ft;
			if (info[1] != nil)
				{
         			var landcover = info[1].names[0];
	 			if (contains(landcover_map,landcover)) {p_cover = landcover_map[landcover];}
				else {p_cover = 0.2;}
				}	
			}
		me.height = get_convective_altitude(convective_alt, elevation, me.index,0.0);
		var current_lifetime = math.sqrt(p_cover)/math.sqrt(0.35) * weather_dynamics.cloud_convective_lifetime_s;
		var fractional_increase = (weather_dynamics.time_lw - me.evolution_timestamp)/current_lifetime;
		me.flt = me.flt + fractional_increase;
		me.evolution_timestamp = weather_dynamics.time_lw;
	},

};


var waveLift = {
	new: func (lat, lon, x, y, phi, height, max_lift) {
		var w = { parents: [waveLift] };
		w.lat = lat;
		w.lon = lon;
		w.x = x;
		w.y = y;
		w.phi = phi;
		w.height = height;
		w.max_lift = max_lift;
		w.phi = getprop(lw~"tmp/tile-orientation-deg");
		return w;
	},

};



#################################################################
# global variable, property creation and the startup listener
#################################################################

var rad_E = 6378138.12;	# earth radius
var lat_to_m = 110952.0; # latitude degrees to meters
var m_to_lat = 9.01290648208234e-06; # meters to latitude degrees
var ft_to_m = 0.30480;
var m_to_ft = 1.0/ft_to_m;
var sec_to_rad = 2.0 * math.pi/86400;

var lon_to_m = 0.0; # needs to be calculated dynamically
var m_to_lon = 0.0; # we do this on startup

# some common abbreviations

var lw = "/local-weather/";
var lwi = "/local-weather/interpolation/";
var ec = "/environment/config/";

# a hash map of the strength for convection associated with terrain types

var landcover_map = {BuiltUpCover: 0.35, Town: 0.35, Freeway:0.35, BarrenCover:0.3, HerbTundraCover: 0.25, GrassCover: 0.2, CropGrassCover: 0.2, EvergreenBroadCover: 0.2, EvergreenNeedleCover: 0.2, Sand: 0.25, Grass: 0.2, Grassland: 0.2, Ocean: 0.01, Marsh: 0.05, Lake: 0.01, ShrubCover: 0.15, Shrub: 0.15, Landmass: 0.2, CropWoodCover: 0.15, MixedForestCover: 0.15, DryCropPastureCover: 0.25, MixedCropPastureCover: 0.2, MixedCrop: 0.2, ComplexCrop: 0.2, IrrCropPastureCover: 0.15, DeciduousBroadCover: 0.1, DeciduousNeedleCover: 0.1, Bog: 0.05, Littoral: 0.05, pa_taxiway : 0.35, pa_tiedown: 0.35, pc_taxiway: 0.35, pc_tiedown: 0.35, Glacier: 0.03, SnowCover: 0.04, DryLake: 0.3, IntermittentStream: 0.2, DryCrop: 0.2, Lava: 0.3, GolfCourse: 0.2, Rock: 0.3, Construction: 0.35, PackIce: 0.04, NaturalCrop: 0.2, Default: 0.2};

# a hash map of average vertical cloud model sizes

var cloud_vertical_size_map = {Altocumulus: 700.0, Cumulus: 600.0, Congestus: 2000.0, Nimbus: 1000.0, Stratus: 800.0, Stratus_structured: 600.0, Stratus_thin: 400.0, Cirrocumulus: 200.0, Cb_box: 2000.0};

# a hash map of offsets for the new cloud rendering system

var offset_map = {Nimbus: 2800.0, Stratus: 2000.0, Stratus_thin: 2500.0, Cirrostratus: 4500.0, Stratus_structured: 1800.0, Stratus_alt: 600.0, Cumulus: 200.0, Congestus: 600.0 };

# the array of aloft wind interpolation altitudes

var wind_altitude_array = [0.0, 5000.0, 10000.0, 18000.0, 24000.0, 30000.0, 34000.0, 39000.0, 45000.0];

# storage arrays for cloud generation

var clouds_path = [];
var clouds_lat = [];
var clouds_lon = [];
var clouds_alt = [];
var clouds_orientation = [];




# storage array for assembled clouds

var cloudAssemblyArray = [];

# additional info needed for dynamical clouds: the base altitude around which cloudlets are distributed
# and the fractional lifetime

var clouds_mean_alt = [];
var clouds_flt = [];
var clouds_evolution_timestamp = [];


# storage arrays for terrain presampling and results by tile

var terrain_n = [];
var alt_50_array = [];
var alt_20_array = [];
var alt_min_array = [];
var alt_mean_array = [];

# array of currently existing effect volumes

var effectVolumeArray = [];
var n_effectVolumeArray = 0;

# global weather hashes

var thermal = {};
var wave = {};
var interpolated_conditions = {};
var current_conditions = {};
var tracerAssembly = {};


# the wind hash stores the current winds

var wind = {surface: [0.0,0.0] , cloudlayer: [0.0,0.0], current: [0.0,0.0]};



# arrays of currently existing weather stations, wind interpolation and atmospheric condition points

var weatherStationArray = [];
var windIpointArray = [];
var atmosphereIpointArray = [];


# a flag for the wind model (so we don't have to do string comparisons all the time)
# 1: constant 2: constant in tile 3: aloft interpolated 4: airmass interpolated

var wind_model_flag = 1;

# globals governing properties of the Cumulus system

var convective_texture_mix = 0.0;
var height_bias = 1.0;
var convective_size_bias = 0.0;
var cumulus_efficiency_factor = 1.0;
var cloud_mean_altitude = 0.0;
var thermal_conditions = getprop(lw~"config/thermal-properties");
var lowest_layer_turbulence = 0.6 - thermal_conditions;
if (lowest_layer_turbulence < 0.0) {lowest_layer_turbulence = 0.0;}

# global keeping track of lighting

var top_shade = 1.0;

# global cloud transparency

var alpha_factor = 1.0;

# global cloud size scale;

var cloud_size_scale = 1.0;

# globals keeping track of the lifetime when building a Cumulus from individual cloudlets

var cloud_fractional_lifetime = 0.0;
var cloud_evolution_timestamp = 0.0;

# globals propagating gust information inside the interpolation loop

var windspeed_multiplier = 1.0;
var winddir_change = 0.0;

# global flags mirroring property tree menu settings

var generate_thermal_lift_flag = 0;
var thread_flag = 1;
var dynamics_flag = 1;
var presampling_flag = 1;
var detailed_clouds_flag = 1;
var dynamical_convection_flag = 1;
var debug_output_flag = 1;
var metar_flag = 0;
var local_weather_running_flag = 0;
var local_weather_startup_flag = 0;
var fps_control_flag = 0;
var buffer_flag = 1;
var detailed_terrain_interaction_flag = 1;
var hardcoded_clouds_flag = 1;
var realistic_visibility_flag = 0;
var scattering_shader_flag = 0;
var wxradar_support_flag = 1;

var ground_haze_factor = 1.0;
var max_vis_range = math.exp(getprop(lw~"config/aux-max-vis-range-m")); 
var temperature_offset = 0.0;
var current_mean_alt = 0.0;
var air_pollution_norm = 0.0;

# globals for framerate controlled cloud management

var fps_average = 0.0;
var fps_samples = 0;
var fps_sum = 0.0;
var target_framerate = 25.0;

# set all sorts of default properties for the menu


setprop(lw~"tmp/scloud-lat",getprop("position/latitude-deg"));
setprop(lw~"tmp/scloud-lon",getprop("position/longitude-deg"));
setprop(lw~"tmp/tile-alt-median-ft",0.0);
setprop(lw~"tmp/tile-alt-min-ft",0.0);
setprop(lw~"tmp/last-reading-pos-del",0);
setprop(lw~"tmp/last-reading-pos-mod",0);
setprop(lw~"tmp/thread-status", "idle");
setprop(lw~"tmp/convective-status", "idle");
setprop(lw~"tmp/presampling-status", "idle");
setprop(lw~"tmp/buffer-status", "idle");
setprop(lw~"tmp/buffer-tile-index", 0);
setprop(lw~"tmp/ipoint-latitude-deg",getprop("position/latitude-deg"));
setprop(lw~"tmp/ipoint-longitude-deg",getprop("position/longitude-deg"));



# set the default loop flags to loops inactive


setprop(lw~"effect-loop-flag",0);
setprop(lw~"interpolation-loop-flag",0);
setprop(lw~"tile-loop-flag",0);
setprop(lw~"lift-loop-flag",0);
setprop(lw~"wave-loop-flag",0);
setprop(lw~"buffer-loop-flag",0);
setprop(lw~"housekeeping-loop-flag",0);
setprop(lw~"convective-loop-flag",0);

# create other management properties

#setprop(lw~"clouds/cloud-number",0);
setprop(lw~"clouds/placement-index",0);
setprop(lw~"clouds/model-placement-index",0);
setprop(lw~"effect-volumes/effect-placement-index",0);

# create properties for effect volume management

setprop(lw~"effect-volumes/number",0);
setprop(lw~"effect-volumes/number-active-vis",0);
setprop(lw~"effect-volumes/number-active-rain",0);
setprop(lw~"effect-volumes/number-active-snow",0);
setprop(lw~"effect-volumes/number-active-turb",0);
setprop(lw~"effect-volumes/number-active-lift",0);
setprop(lw~"effect-volumes/number-active-sat",0);

# setprop(lw~"config/max-vis-range-m", 120000.0);
setprop(lw~"config/temperature-offset-degc", 0.0);

setprop("/sim/rendering/eye-altitude-m", getprop("/position/altitude-ft") * ft_to_m);

# create properties for tile management

setprop(lw~"tiles/tile-counter",0);

# create properties for wind

setprop(lwi~"ipoint-number",0);

var updateMenu = func {
	var isEnabled = getprop("/nasal/local_weather/enabled");
	gui.menuEnable("local_weather", isEnabled);
	if (isEnabled) {setprop("/sim/rendering/clouds3d-enable", "true");}
}

_setlistener("/nasal/local_weather/enabled", updateMenu);